LECTURE 6: LIMITS THEOREMS FOR SEQUENCES

Let's now show some properties of limits, starting with:

1. Limits are Unique (Section 7)

Video: Limits are Unique

Limits Are Unique:

If $\lim _{n \rightarrow \infty} s_{n}=s$ and $\lim _{n \rightarrow \infty} s_{n}=t$, then $s=t$
In other words, s_{n} cannot converge to two different limits at the same time. In a way this makes sense: How can s_{n} be close to both s and t ?

Proof: Suppose $\lim _{n \rightarrow \infty} s_{n}=s$ and $\lim _{n \rightarrow \infty} s_{n}=t$.
Let $\epsilon>0$ be arbitrary.
Since $\lim _{n \rightarrow \infty} s_{n}=s$, we know that there is $N_{1}>0$ such that if $n>N_{1}$, then $\left|s_{n}-s\right|<\epsilon$

Date: Thursday, September 16, 2021.

Since $\lim _{n \rightarrow \infty} s_{n}=t$, we know that there is $N_{2}>0$ such that if $n>N_{2}$, then $\left|s_{n}-t\right|<\epsilon$

Let $N=\max \left\{N_{1}, N_{2}\right\}$, then if $n>N$, we get:

$$
|s-t|=\left|\left(s-s_{n}\right)+\left(s_{n}-t\right)\right| \leq\left|s-s_{n}\right|+\left|s_{n}-t\right|<\epsilon+\epsilon=2 \epsilon
$$

Therefore $0 \leq|s-t|<2 \epsilon$, but since ϵ is arbitrarily small, we get $|s-t|=0 \Rightarrow s=t$

2. Convergent Sequences are Bounded

Video: Convergent Sequences are Bounded

Here's another quick but neat fact about convergent sequences:

Convergent sequences are bounded:

If s_{n} converges (to s), then s_{n} is bounded, that is there is M such that

$$
\left|s_{n}\right| \leq M \quad \text { for all } n \in \mathbb{N}
$$

Proof: Fix $\epsilon>0$, then since $s_{n} \rightarrow s$, there is N (WLOG assume $N \in \mathbb{N}$) such that if $n>N$, then $\left|s_{n}-s\right|<\epsilon$.

But if $n>N$, then

$$
\left|s_{n}\right|=\left|s_{n}-s+s\right| \leq\left|s_{n}-s\right|+|s|<\epsilon+|s|
$$

Note: Intuitively, for $n>N, s_{n}$ is bounded by the fixed number $\epsilon+|s|$. And for $n \leq N, s_{n}$ is just bounded above by the largest one of
$s_{1}, s_{2}, \cdots, s_{N}$ (which are just finitely many terms).

Let $M=\max \left\{\left|s_{1}\right|, \cdots,\left|s_{N}\right|, \epsilon+|s|\right\}$ and let's show $\left|s_{n}\right| \leq M$ for all n
Case 1: $n>N$, then $\left|s_{n}\right| \leq \epsilon+|s| \leq M$.
Case 2: $n \leq N$, then $\left|s_{n}\right| \leq \max \left\{\left|s_{1}\right|, \cdots,\left|s_{N}\right|\right\} \leq M$.
So in any case, $\left|s_{n}\right| \leq M \checkmark$

3. Sum of Limits

Video: Sum of Limits

Finally, since we're more comfortable with the definition of the limit, we can prove some limit laws, starting with:

Sum of Limits:

Suppose $\lim _{n \rightarrow \infty} s_{n}=s$ and $\lim _{n \rightarrow \infty} t_{n}=t$, then

$$
\lim _{n \rightarrow \infty} s_{n}+t_{n}=s+t
$$

In other words:

$$
\lim _{n \rightarrow \infty} s_{n}+t_{n}=\lim _{n \rightarrow \infty} s_{n}+\lim _{n \rightarrow \infty} t_{n}
$$

Proof: Let $\epsilon>0$ be given
Since $\lim _{n \rightarrow \infty} s_{n}=s$, we know that there is N_{1} such that if $n>N_{1}$, then $\left|s_{n}-s\right|<\frac{\epsilon}{2}$.

And since $\lim _{n \rightarrow \infty} t_{n}=t$, there is N_{2} such that if $n>N_{2}$, then $\left|t_{n}-t\right|<\frac{\epsilon}{2}$.

But if $N=\max \left\{N_{1}, N_{2}\right\}$ then if $n>N$, we have:

$$
\left|s_{n}+t_{n}-(s+t)\right|=\left|s_{n}-s+t_{n}-t\right| \leq\left|s_{n}-s\right|+\left|t_{n}-t\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \mathfrak{\checkmark}
$$

Hence $\lim _{n \rightarrow \infty} s_{n}+t_{n}=s+t$

4. Product of Limits

Video: Product of Limits

In the same spirit, let's show that products of sequences converge:

Product of Limits:

Suppose $\lim _{n \rightarrow \infty} s_{n}=s$ and $\lim _{n \rightarrow \infty} t_{n}=t$, then

$$
\lim _{n \rightarrow \infty} s_{n} t_{n}=s t=\left(\lim _{n \rightarrow \infty} s_{n}\right)\left(\lim _{n \rightarrow \infty} t_{n}\right)
$$

Proof:

STEP 1: Scratch-work
This relies on a clever but important use of the triangle inequality:

$$
\begin{aligned}
\left|s_{n} t_{n}-s t\right| & =\left|s_{n} t_{n}-s_{n} t+s_{n} t-s t\right| \\
& \leq\left|s_{n} t_{n}-s_{n} t\right|+\left|s_{n} t-s t\right| \\
& =\left|s_{n}\right|\left|t_{n}-t\right|+|t|\left|s_{n}-s\right|
\end{aligned}
$$

Now since $\left|t_{n}-t\right|$ is small and $\left(s_{n}\right)$ is bounded, the first term is small, and since $\left|s_{n}-s\right|$ is small, the second term is small as well.

STEP 2: Assume $t \neq 0$ (the case $t=0$ is dealt with separately, see Problem 4 in section 8)

Let $\epsilon>0$ be given
Since $\left(s_{n}\right)$ converges, $\left(s_{n}\right)$ is bounded, so there is $M>0$ such that $\left|s_{n}\right| \leq M$ for all n.

Since $t_{n} \rightarrow t$, there is N_{1} such that if $n>N_{1}$, then $\left|t_{n}-t\right|<\frac{\epsilon}{2 M}$ (This will eventually cancel the $\left|s_{n}\right|$ term)

Since $s_{n} \rightarrow s$, there is N_{2} such that is $n>N_{2}$, then $\left|s_{n}-s\right|<\frac{\epsilon}{2|t|}$ (This will eventually cancel the $|t|$ term)

Let $N=\max \left\{N_{1}, N_{2}\right\}$, then if $n>N$, we have

$$
\begin{aligned}
\left|s_{n} t_{n}-s t\right| & \leq\left|s_{n}\right|\left|t_{n}-t\right|+|t|\left|s_{n}-s\right| \\
& \leq M\left|t_{n}-t\right|+|t|\left|s_{n}-s\right| \\
& <M\left(\frac{\epsilon}{2 M}\right)+|t|\left(\frac{\epsilon}{2|t|}\right) \\
& =\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon
\end{aligned}
$$

Therefore $\lim _{n \rightarrow \infty} s_{n} t_{n}=s t$
5. Bounded Away from 0

Video: Bounded Away from 0

Before we prove the analogous result for quotients, we need another fact about sequences:

Motivation: Consider $s_{n}=\frac{1}{n}$

Even though every term is positive, we do NOT have inf $\left\{s_{n} \mid n \in \mathbb{N}\right\}>$ 0 . In fact, here the inf is 0 .

This is not the case with sequences $s_{n} \rightarrow s$ with $s \neq 0$:

Fact:

Suppose $s_{n} \neq 0$ for all n and $\lim _{n \rightarrow \infty} s_{n}=s$ with $s \neq 0$. Then there is some $m>0$ such that

$$
\left|s_{n}\right| \geq m \quad(\text { For all } n)
$$

In particular, $\inf \left\{\left|s_{n}\right| \mid n \in \mathbb{N}\right\} \geq m>0$ and so $\left|s_{n}\right|$ is "bounded away from 0"

Note: This is FALSE if $s=0$, as the example $s_{n}=\frac{1}{n}$ shows.
Proof: WLOG assume $s>0$
Let $\epsilon>0 \mathrm{TBA}$
Since $s_{n} \rightarrow s$, there is N (Assume $\left.N \in \mathbb{N}\right)^{2}$ such that if $n>N$ then $\left|s_{n}-s\right|<\epsilon$. However,

$$
\left|s_{n}-s\right|<\epsilon \Rightarrow-\epsilon<s_{n}-s<\epsilon \Rightarrow s-\epsilon<s_{n}<s+\epsilon
$$

In particular $s_{n}>s-\epsilon$.

Now choose $\epsilon>0$ such that $s-\epsilon>0$, that is $\epsilon<s$ (which we can do since $s>0$)

[^0]Intuitively: For $n>N, s_{n}$ is bounded below by the fixed number $s-\epsilon>0$. And for $n \leq N,\left|s_{n}\right|$ is just bounded below by the smallest one of $\left|s_{1}\right|,\left|s_{2}\right|, \cdots,\left|s_{N}\right|$ (which are just finitely many terms).

Let $m=\min \left\{\left|s_{1}\right|, \cdots,\left|s_{N}\right|, s-\epsilon\right\}>0$ and let's show that $\left|s_{n}\right| \geq m$ for all n.

Case 1: If $n>N$, then $s_{n}>s-\epsilon \geq m(>0) \Rightarrow\left|s_{n}\right| \geq m$
Case 2: If $n \leq N$, then

$$
\left|s_{n}\right| \geq \min \left\{\left|s_{1}\right|, \cdots,\left|s_{N}\right|\right\} \geq \min \left\{\left|s_{1}\right|, \cdots,\left|s_{N}\right|, s-\epsilon\right\}=m
$$

Therefore $\left|s_{n}\right| \geq m$ for all $n \checkmark$

6. Quotient of Limits (Example 7)

Video: Limit Example 7: Quotients
Now we would like to prove that $\lim _{n \rightarrow \infty} \frac{t_{n}}{s_{n}}=\frac{t}{s}$, and for this we need an important special case:

Example 7:

Show that if $s_{n} \neq 0$ for all n and $\lim _{n \rightarrow \infty} s_{n}=s \neq 0$, then

$$
\lim _{n \rightarrow \infty} \frac{1}{s_{n}}=\frac{1}{s}
$$

(Example 6 is the example with $\left|s_{n}\right| \rightarrow|s|$, AP on the section 8 HW)
STEP 1: Scratch work

$$
\left|\frac{1}{s_{n}}-\frac{1}{s}\right|=\left|\frac{s-s_{n}}{\left(s_{n}\right) s}\right|=\frac{\left|s_{n}-s\right|}{\left|s_{n}\right||s|}<\epsilon
$$

If the denominator were independent of n, we could just solve for $\left|s_{n}-s\right|$. But remember that $\left(s_{n}\right)$ is bounded away from 0 , that is $\left|s_{n}\right| \geq m$ for some $m>0$, so we get

$$
\frac{\left|s_{n}-s\right|}{\left|s_{n}\right||s|}<\frac{\left|s_{n}-s\right|}{m|s|}<\epsilon
$$

Which gives $\left|s_{n}-s\right|<m|s| \epsilon$

STEP 2: Actual Proof

Let $\epsilon>0$ be given.

Since $\left(s_{n}\right)$ is bounded away from 0 , there is $m>0$ such that $\left|s_{n}\right| \geq m$ for all n.

Now since $s_{n} \rightarrow s$, there is n such that for all n, if $n>N$, then

$$
\left|s_{n}-s\right|<m|s| \epsilon
$$

But then, with the same n, if $n>N$, we get:

$$
\left|\frac{1}{s_{n}}-\frac{1}{s}\right|=\frac{\left|s_{n}-s\right|}{\left|s_{n}\right||s|}<\frac{\left|s_{n}-s\right|}{m|s|}<\frac{\epsilon m|s|}{m|s|}=\epsilon \checkmark
$$

Hence $\lim _{n \rightarrow \infty} \frac{1}{s_{n}}=\frac{1}{s}$

Corollary:

If $s_{n} \neq 0$ for all n and $s_{n} \rightarrow s \neq 0$ and $t_{n} \rightarrow t$, then

$$
\lim _{n \rightarrow \infty} \frac{t_{n}}{s_{n}}=\frac{t}{s}
$$

In other words:

$$
\lim _{n \rightarrow \infty} \frac{t_{n}}{s_{n}}=\frac{\lim _{n \rightarrow \infty} t_{n}}{\lim _{n \rightarrow \infty} s_{n}}
$$

Proof:

$$
\lim _{n \rightarrow \infty} \frac{t_{n}}{s_{n}}=\lim _{n \rightarrow \infty} t_{n}\left(\frac{1}{s_{n}}\right)=\left(\lim _{n \rightarrow \infty} t_{n}\right)\left(\lim _{n \rightarrow \infty} \frac{1}{s_{n}}\right)=t\left(\frac{1}{s}\right)=\frac{t}{s}
$$

Where, we used both the product law and Example 7 above.
From now on, feel free to manipulate limits the same way you do in calculus!

7. Example 8: Exponential Limit

Video: Limit Example 8: Exponential

Now let's calculate some classical limits. For the following, we'll need the binomial theorem:

Motivation: $(a+b)^{2}=a^{2}+2 a b+b^{2},(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$, and more generally:

Binomial Theorem:

$$
(a+b)^{n}=a^{n}+n a^{n-1} b+\frac{n(n-1)}{2} a^{n-2} b^{2}+\cdots+b^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

Where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$

Example:

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=0 \quad(p>0)
$$

(SKIP, similar to Exercise 1(b) in section 8)

Example 8:

$$
\text { If }|a|<1 \text {, then } \lim _{n \rightarrow \infty} a^{n}=0
$$

For example, this shows $\lim _{n \rightarrow \infty}\left(\frac{1}{2}\right)^{n}=0$

[^0]: ${ }^{1}$ If $s<0$, just replace s_{n} with $-s_{n} \neq 0$ which doesn't change the result since $\left|-s_{n}\right|=\left|s_{n}\right|$)
 ${ }^{2}$ If N is not an integer, just replace N by the smallest integer greater than N. So if $N=3.14$, replace N with 4

