
LECTURE 6: LIMITS THEOREMS FOR SEQUENCES

Let’s now show some properties of limits, starting with:

1. Limits are Unique (Section 7)

Video: Limits are Unique

Limits Are Unique:

If limn→∞ sn = s and limn→∞ sn = t, then s = t

In other words, sn cannot converge to two different limits at the same
time. In a way this makes sense: How can sn be close to both s and t?

Proof: Suppose limn→∞ sn = s and limn→∞ sn = t.

Let ϵ > 0 be arbitrary.

Since limn→∞ sn = s, we know that there is N1 > 0 such that if n > N1,
then |sn − s| < ϵ
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https://youtu.be/JfAycF5DJak
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Since limn→∞ sn = t, we know that there is N2 > 0 such that if n > N2,
then |sn − t| < ϵ

Let N = max {N1, N2}, then if n > N , we get:

|s− t| = |(s− sn) + (sn − t)| ≤ |s− sn|+ |sn − t| < ϵ+ ϵ = 2ϵ

Therefore 0 ≤ |s− t| < 2ϵ, but since ϵ is arbitrarily small, we get
|s− t| = 0 ⇒ s = t □

2. Convergent Sequences are Bounded

Video: Convergent Sequences are Bounded

Here’s another quick but neat fact about convergent sequences:

Convergent sequences are bounded:

If sn converges (to s), then sn is bounded, that is there is M such
that

|sn| ≤ M for all n ∈ N

Proof: Fix ϵ > 0, then since sn → s, there is N (WLOG assume
N ∈ N) such that if n > N , then |sn − s| < ϵ.

But if n > N , then

|sn| = |sn − s+ s| ≤ |sn − s|+ |s| < ϵ+ |s|

Note: Intuitively, for n > N , sn is bounded by the fixed number
ϵ+ |s|. And for n ≤ N , sn is just bounded above by the largest one of

https://youtu.be/KpSvZW2wXk0
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s1, s2, · · · , sN (which are just finitely many terms).

Let M = max {|s1| , · · · , |sN | , ϵ+ |s|} and let’s show |sn| ≤ M for all n

Case 1: n > N , then |sn| ≤ ϵ+ |s| ≤ M .

Case 2: n ≤ N , then |sn| ≤ max {|s1| , · · · , |sN |} ≤ M .

So in any case, |sn| ≤ M ✓ □

3. Sum of Limits

Video: Sum of Limits

Finally, since we’re more comfortable with the definition of the limit,
we can prove some limit laws, starting with:

https://youtu.be/c5JqrcMMrV4
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Sum of Limits:

Suppose limn→∞ sn = s and limn→∞ tn = t, then

lim
n→∞

sn + tn = s+ t

In other words:

lim
n→∞

sn + tn = lim
n→∞

sn + lim
n→∞

tn

Proof: Let ϵ > 0 be given

Since limn→∞ sn = s, we know that there is N1 such that if n > N1,
then |sn − s| < ϵ

2 .

And since limn→∞ tn = t, there is N2 such that if n > N2, then
|tn − t| < ϵ

2 .

But if N = max {N1, N2} then if n > N , we have:

|sn + tn − (s+ t)| = |sn − s+ tn − t| ≤ |sn − s|+|tn − t| < ϵ

2
+
ϵ

2
= ϵ✓

Hence limn→∞ sn + tn = s+ t □

4. Product of Limits

Video: Product of Limits

In the same spirit, let’s show that products of sequences converge:

https://youtu.be/4pvFRvtMqpg
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Product of Limits:

Suppose limn→∞ sn = s and limn→∞ tn = t, then

lim
n→∞

sntn = st =
(
lim
n→∞

sn

)(
lim
n→∞

tn

)
Proof:

STEP 1: Scratch-work

This relies on a clever but important use of the triangle inequality:

|sntn − st| = |sntn − snt+ snt− st|
≤ |sntn − snt|+ |snt− st|
= |sn| |tn − t|+ |t| |sn − s|

Now since |tn − t| is small and (sn) is bounded, the first term is small,
and since |sn − s| is small, the second term is small as well.

STEP 2: Assume t ̸= 0 (the case t = 0 is dealt with separately, see
Problem 4 in section 8)

Let ϵ > 0 be given

Since (sn) converges, (sn) is bounded, so there is M > 0 such that
|sn| ≤ M for all n.

Since tn → t, there is N1 such that if n > N1, then |tn − t| < ϵ
2M (This

will eventually cancel the |sn| term)
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Since sn → s, there is N2 such that is n > N2, then |sn − s| < ϵ
2|t| (This

will eventually cancel the |t| term)

Let N = max {N1, N2}, then if n > N , we have

|sntn − st| ≤ |sn| |tn − t|+ |t| |sn − s|
≤M |tn − t|+ |t| |sn − s|

<M
( ϵ

2M

)
+ |t|

(
ϵ

2 |t|

)
=
ϵ

2
+

ϵ

2
=ϵ

Therefore limn→∞ sntn = st □

5. Bounded Away from 0

Video: Bounded Away from 0

Before we prove the analogous result for quotients, we need another
fact about sequences:

Motivation: Consider sn = 1
n

https://youtu.be/CxkWhmjtDp4
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Even though every term is positive, we doNOT have inf {sn | n ∈ N} >
0. In fact, here the inf is 0.

This is not the case with sequences sn → s with s ̸= 0:

Fact:

Suppose sn ̸= 0 for all n and limn→∞ sn = s with s ̸= 0. Then
there is some m > 0 such that

|sn| ≥ m (For all n)

In particular, inf {|sn| | n ∈ N} ≥ m > 0 and so |sn| is “bounded away
from 0”
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Note: This is FALSE if s = 0, as the example sn = 1
n shows.

Proof: WLOG1, assume s > 0

Let ϵ > 0 TBA

Since sn → s, there is N (Assume N ∈ N)2 such that if n > N then
|sn − s| < ϵ. However,

|sn − s| < ϵ ⇒ −ϵ < sn − s < ϵ ⇒ s− ϵ < sn < s+ ϵ

In particular sn > s− ϵ.

Now choose ϵ > 0 such that s− ϵ > 0, that is ϵ < s (which we can do
since s > 0)

1If s < 0, just replace sn with −sn ̸= 0 which doesn’t change the result since |−sn| = |sn|)
2If N is not an integer, just replace N by the smallest integer greater than N . So if N = 3.14,

replace N with 4
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Intuitively: For n > N , sn is bounded below by the fixed number
s− ϵ > 0. And for n ≤ N , |sn| is just bounded below by the smallest
one of |s1| , |s2| , · · · , |sN | (which are just finitely many terms).

Let m = min {|s1| , · · · , |sN | , s− ϵ} > 0 and let’s show that |sn| ≥ m
for all n.

Case 1: If n > N , then sn > s− ϵ ≥ m(> 0) ⇒ |sn| ≥ m

Case 2: If n ≤ N , then

|sn| ≥ min {|s1| , · · · , |sN |} ≥ min {|s1| , · · · , |sN | , s− ϵ} = m

Therefore |sn| ≥ m for all n ✓
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6. Quotient of Limits (Example 7)

Video: Limit Example 7: Quotients

Now we would like to prove that limn→∞
tn
sn

= t
s , and for this we need

an important special case:

Example 7:

Show that if sn ̸= 0 for all n and limn→∞ sn = s ̸= 0, then

lim
n→∞

1

sn
=

1

s

(Example 6 is the example with |sn| → |s|, AP on the section 8 HW)

STEP 1: Scratch work∣∣∣∣ 1sn − 1

s

∣∣∣∣ = ∣∣∣∣s− sn
(sn)s

∣∣∣∣ = |sn − s|
|sn| |s|

< ϵ

If the denominator were independent of n, we could just solve for
|sn − s|. But remember that (sn) is bounded away from 0, that is
|sn| ≥ m for some m > 0, so we get

|sn − s|
|sn| |s|

<
|sn − s|
m |s|

< ϵ

Which gives |sn − s| < m |s| ϵ

STEP 2: Actual Proof

Let ϵ > 0 be given.

https://youtu.be/eRs84Cbj5Ho
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Since (sn) is bounded away from 0, there is m > 0 such that |sn| ≥ m
for all n.

Now since sn → s, there is n such that for all n, if n > N , then

|sn − s| < m |s| ϵ
But then, with the same n, if n > N , we get:∣∣∣∣ 1sn − 1

s

∣∣∣∣ = |sn − s|
|sn| |s|

<
|sn − s|
m |s|

<
ϵm |s|
m |s|

= ϵ✓

Hence limn→∞
1
sn

= 1
s □

Corollary:

If sn ̸= 0 for all n and sn → s ̸= 0 and tn → t, then

lim
n→∞

tn
sn

=
t

s

In other words:

lim
n→∞

tn
sn

=
limn→∞ tn
limn→∞ sn

Proof:

lim
n→∞

tn
sn

= lim
n→∞

tn

(
1

sn

)
=

(
lim
n→∞

tn

)(
lim
n→∞

1

sn

)
= t

(
1

s

)
=

t

s

Where, we used both the product law and Example 7 above. □

From now on, feel free to manipulate limits the same way you do in
calculus!
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7. Example 8: Exponential Limit

Video: Limit Example 8: Exponential

Now let’s calculate some classical limits. For the following, we’ll need
the binomial theorem:

Motivation: (a+ b)2 = a2+2ab+ b2, (a+ b)3 = a3+3a2b+3ab2+ b3,
and more generally:

Binomial Theorem:

(a+b)n = an+nan−1b+
n(n− 1)

2
an−2b2+· · ·+bn =

n∑
k=0

(
n

k

)
an−kbk

Where
(
n
k

)
= n!

k!(n−k)!

Example:

lim
n→∞

1

np
= 0 (p > 0)

(SKIP, similar to Exercise 1(b) in section 8)

Example 8:

If |a| < 1, then lim
n→∞

an = 0

For example, this shows limn→∞
(
1
2

)n
= 0

https://youtu.be/qxlSclbmh-w
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