LECTURE 6: VECTOR FUNCTIONS (I)

Welcome to the world of vector functions, which are just parametric equations in disguise.

1. Definition and Examples

Example 1:

Find the vector equations of the circle centered at $(2,3)$ and radius 4.

Parametric Equations:

$$
\left\{\begin{array}{r}
x(t)=2+4 \cos (t) \\
y(t)=3+4 \sin (t) \\
0 \leq t \leq 2 \pi
\end{array}\right.
$$

Date: Friday, September 10, 2021.

Vector Equation: Just put $x(t)$ and $y(t)$ in a vector:

Definition: (Vector Function)

$$
\mathbf{r}(t)=\langle x(t), y(t)\rangle=\langle 2+4 \cos (t), 3+4 \sin (t)\rangle
$$

Here for every time t, we have a vector $\mathbf{r}(t)$
If the notation $\mathbf{r}(t)$ looks familiar, it's because we used it for lines:

Example 2:

Find the vector equation of the line going through $(2,5,0)$ and ($0,1,-3$)

Point: (2, 5, 0)
Direction Vector: $\langle 0-2,1-5,-3-0\rangle=\langle-2,-4,-3\rangle$
Vector Equation:

$$
\mathbf{r}(t)=\langle 2,5,0\rangle+t\langle-2,-4,-3\rangle=\langle 2-2 t, 5-4 t,-3 t\rangle
$$

Example 3: (extra practice)

Find the vector equation of the quarter-ellipse centered at $(0,3,1)$ and going from $(0,5,1)$ to $(0,3,6)$ (counterclockwise)

$$
\begin{gathered}
\left\{\begin{array}{l}
x(t)=0 \\
y(t)=3+2 \cos (t) \\
z(t)=1+5 \sin (t) \\
0 \leq t \leq \frac{\pi}{2}
\end{array}\right. \\
\mathbf{r}(t)=\langle 0,3+2 \cos (t), 1+5 \sin (t)\rangle, 0 \leq t \leq \frac{\pi}{2}
\end{gathered}
$$

Example 4:

Find the vector equation of the curve of intersection of the cylinder $x^{2}+z^{2}=4$ and the plane $y+z=4$
(Notice that in $x^{2}+z^{2}=4, y$ is missing, so it's a cylinder in the y-direction. And for $y+z=4 \Rightarrow z=4-y$, draw the line $z=4-y$ and shift it in the x-direction)

First, notice that in the $x z$-plane, $x^{2}+z^{2}=4$ is just a circle of radius 2 centered at $(0,0,0)$, which gives

$$
\begin{aligned}
& x(t)=2 \cos (t) \\
& z(t)=2 \sin (t)
\end{aligned}
$$

To figure out y, simply use

$$
\begin{gathered}
y+z=4 \Rightarrow y=4-z \Rightarrow y(t)=4-z(t)=4-2 \sin (t) \\
\mathbf{r}(t)=\langle 2 \cos (t), 4-2 \sin (t), 2 \sin (t)\rangle(0 \leq t \leq 2 \pi)
\end{gathered}
$$

Finally, it's often useful to be able to sketch some vector curves.

Example 5:

Sketch the curve $\mathbf{r}(t)=\langle\cos (t), \sin (t), t\rangle$
Notice here that $x(t)=\cos (t)$ and $y(t)=\sin (t)$, so $x^{2}+y^{2}=1$, which means that our curve lies in the cylinder $x^{2}+y^{2}=1$. Finally $z(t)=t$ just means t is going up (and down), so the curve is a helix/DNA/slinky:

Slinky

Example 6: (extra practice)

Sketch the curve $\mathbf{r}(t)=\langle t \cos (t), t \sin (t), t\rangle, t \geq 0$
Here notice that:

$$
x^{2}+y^{2}=t^{2} \cos ^{2}(t)+t^{2} \sin ^{2}(t)=t^{2}
$$

So x and y lie on a circle with radius t (which gets bigger and bigger), and z is always increasing, so the curve is a tornado in the z-direction:

2. Calculus with Vector Functions

What can we do with vector functions? The good news is that all the concepts from calculus (limits, derivatives, integrals) easily apply to vector functions as well!
2.1. Limits. We can take limits of vector functions:

Example 7:

Find $\lim _{t \rightarrow 0} \mathbf{r}(t)$ where

$$
\mathbf{r}(t)=\left\langle\ln (1+t), \frac{1}{\sqrt{9-t^{2}}}, 2^{t}\right\rangle
$$

$$
\begin{aligned}
& \lim _{t \rightarrow 0} \mathbf{r}(t)=\lim _{t \rightarrow 0}\left\langle\ln (1+t), \frac{1}{\sqrt{9-t^{2}}}, 2^{t}\right\rangle \\
& \stackrel{\text { DEF }}{=}\left\langle\lim _{t \rightarrow 0} \ln (1+t), \lim _{t \rightarrow 0} \frac{1}{\sqrt{9-t^{2}}}, \lim _{t \rightarrow 0} 2^{t}\right\rangle \\
&=\left\langle\ln (1+0), \frac{1}{\sqrt{9-0^{2}}}, 2^{0}\right\rangle \\
&=\left\langle 0, \frac{1}{3}, 1\right\rangle
\end{aligned}
$$

Interpretation: As t goes to $0, \mathbf{r}(t)$ gets closer to $\left\langle 0, \frac{1}{3}, 1\right\rangle$

Example 8: (optional)
Is $\mathbf{r}(t)$ (as above) continuous at $t=0$?

Definition:

$\mathbf{r}(t)$ is continuous at a if

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{r}(a)
$$

Continuous Not Continuous

Here $a=0$ and $\lim _{t \rightarrow 0} \mathbf{r}(t)=\left\langle 0, \frac{1}{3}, 1\right\rangle$ (by the previous example)

Moreover:

$$
\mathbf{r}(0)=\left\langle\ln (1+0), \frac{1}{\sqrt{9-0^{2}}}, 2^{0}\right\rangle=\left\langle 0, \frac{1}{3}, 1\right\rangle
$$

Since both of those are equal, the answer is YES.
2.2. Integrals. We can take also integrals of vector functions:

Example 9:

Find $\int \mathbf{r}(t) d t$ where $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$

$$
\begin{aligned}
\int \mathbf{r}(t) d t \stackrel{\text { DEF }}{=} & \left\langle\int t d t, \int t^{2} d t, \int t^{3} d t\right\rangle \\
& =\left\langle\frac{t^{2}}{2}+A, \frac{t^{3}}{3}+B, \frac{t^{4}}{4}+C\right\rangle
\end{aligned}
$$

Note: Make sure NOT to write $\left\langle\frac{t^{2}}{2}+C, \frac{t^{3}}{3}+C, \frac{t^{4}}{4}+C\right\rangle$. The constants could in theory be different!
(This unfortunately does not measure the area under the curve because $d t$ is a small change in time, not a small change in x; we'll later learn how to do that.)
2.3. Derivatives. Most importantly, we can take derivatives of vector functions, which will have an important interpretation.

Example 10:

Find $\mathbf{r}^{\prime}(t)$ where $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$

$$
\mathbf{r}^{\prime}(t) \stackrel{\mathrm{DEF}}{=}\left\langle(t)^{\prime},\left(t^{2}\right)^{\prime},\left(t^{3}\right)^{\prime}\right\rangle=\left\langle 1,2 t, 3 t^{2}\right\rangle
$$

Example 11:

Find $\mathbf{r}^{\prime}(\pi)$ where $\mathbf{r}(t)=\langle\cos (t), \sin (t), \sin (2 t)\rangle$

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=\langle-\sin (t), \cos (t), 2 \cos (2 t)\rangle \\
\mathbf{r}^{\prime}(\pi)=\langle-\sin (\pi), \cos (\pi), 2 \cos (2 \pi)\rangle=\langle 0,-1,2\rangle
\end{gathered}
$$

Example 12: (extra practice)

Find $\mathbf{r}^{\prime \prime}(t)$ where $\mathbf{r}(t)=\left\langle e^{t}, e^{2 t}, e^{4 t}\right\rangle$

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=\left\langle e^{t}, 2 e^{2 t}, 4 e^{4 t}\right\rangle \\
\mathbf{r}^{\prime \prime}(t)=\left\langle e^{t}, 2\left(2 e^{2 t}\right), 4\left(4 e^{4 t}\right)\right\rangle=\left\langle e^{t}, 4 e^{2 t}, 16 e^{4 t}\right\rangle
\end{gathered}
$$

3. Tangent Lines

Why are derivatives so important? Because they help us find tangent lines to curves.

Example 13: (Good quiz/exam question)

Find the (parametric) equations of the tangent line to the following curve at $t=1$:

$$
\mathbf{r}(t)=\left\langle 1+t, t^{2}, 3 t+t^{3}\right\rangle
$$

Recall:

To find the equation of a line, we need a point and a direction vector.

Point: Since $t=1$, the point is

$$
\mathbf{r}(1)=\left\langle 1+1,1^{2}, 3(1)+1^{3}\right\rangle=\langle 2,1,4\rangle
$$

Direction Vector: First calculate

$$
\mathbf{r}^{\prime}(t)=\left\langle 1,2 t, 3+3 t^{2}\right\rangle
$$

Definition:

$\mathbf{r}^{\prime}(a)$ is the tangent vector of \mathbf{r} at $t=a$

Interpretation: $\mathbf{r}^{\prime}(a)$ gives the direction/slope vector of the tangent line to the curve $\mathbf{r}(t)$ at $t=a$:

Compare this to single-variable calculus, where $f^{\prime}(a)$ gives the slope of the tangent line to a function f at a point a.

Here: $t=1$ so

$$
\mathbf{r}^{\prime}(1)=\left\langle 1,2(1), 3+3(1)^{2}\right\rangle=\langle 1,2,6\rangle \quad \text { (Direction/Tangent Vector) }
$$

Equation: Point $(2,1,4)$, Direction vector $\langle 1,2,6\rangle$, so

$$
\left\{\begin{array}{l}
x(t)=2+t \\
y(t)=1+2 t \\
z(t)=4+6 t
\end{array}\right.
$$

Also written as $\langle 2+t, 1+2 t, 4+6 t\rangle$

Example 14: (Good quiz/exam question)

Find the (parametric) equations of the tangent line to the curve $\mathbf{r}(t)=\left\langle(2+t)^{2}, 3 t^{3}, 4 t-1\right\rangle$ at the point $(16,24,7)$

Point: $(16,24,7)$

Direction Vector:

$$
\mathbf{r}^{\prime}(t)=\left\langle 2(2+t), 3\left(3 t^{2}\right), 4\right\rangle=\left\langle 4+2 t, 9 t^{2}, 4\right\rangle
$$

Find t :

$$
\left\langle(2+t)^{2}, 3 t^{3}, 4 t-1\right\rangle=\langle 16,24,7\rangle
$$

The last equation becomes:

$$
4 t-1=7 \Rightarrow 4 t=8 \Rightarrow t=2
$$

And indeed for $t=2$ we get $(2+t)^{2}=4^{2}=16$ and $3 t^{3}=3(8)=24$, hence $t=2$, and we need to calculate:

$$
\mathbf{r}^{\prime}(2)=\left\langle 4+2(2), 9(2)^{2}, 4\right\rangle=\langle 8,36,4\rangle
$$

Equation: Point (16, 24, 7), Direction Vector $\langle 8,36,4\rangle$

$$
\left\{\begin{array}{l}
x(t)=16+8 t \\
y(t)=24+36 t \\
z(t)=7+4 t
\end{array}\right.
$$

Or $\langle 16+8 t, 24+36 t, 7+4 t\rangle$

