
LECTURE 6: POWER SERIES

Here are a couple more facts about power series:

1. Power Series

Recall: f is analytic if f has a power series, that is there are cn and
R such that

f(x) =
∞∑
n=0

cnx
n for all x ∈ (−R,R)

Fact: If f(x) is analytic then cn = f (n)(0)
n!

Why? If you by set x = 0 in the power series, you get f(0) = c0.

Differentiating the power series (ok from last time), we get f ′(x) =∑∞
n=1 ncnx

n−1, and setting x = 0 we have f ′(0) = c1

Differentiating it again and setting x = 0 we get f ′′(0) = 2c2 so

c2 = f ′′(0)
2 and so on. . . �

This also shows that power series expansions are unique: If f(x) =∑
anx

n =
∑
bnx

n in (−R,R), then an = bn = f (n)(0)
n!

A non-analytic smooth function:

Let f(x) =

{
e−

1
x if x > 0

0 if x ≤ 0
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In that case can show cn = f (n)(0)
n! = 0 for all n (see homework) so∑∞

n=0 cnx
n = 0 but f(x) is clearly not 0, so f does not equal its power

series expansion.

So although analytic functions are smooth (infinitely differentiable),
not all smooth functions are analytic.

Finally, using power series, we can define the familiar functions from
calculus such as ex =

∑∞
n=0

xn

n! , cos(x), sin(x) etc (see Chapter 8 in
Rudin if interested)

2. A double sum

In general, if aij is a doubly-infinite sequence, then

∞∑
i=1

∞∑
j=1

aij︸ ︷︷ ︸
Column Sum

6=
∞∑
j=1

∞∑
i=1

aij︸ ︷︷ ︸
Row Sum

Non-Example: Let aij be the matrix with 1′s on the main diagonal,
and −1′s on the diagonal above, and 0 everywhere else (see picture in
lecture).

Then the column sums are 0, 0, 0, 0, . . . , so
∑∞

i=1

∑∞
j=1 aij = 0

And the row sums are 1, 0, 0, 0, . . . , so
∑∞

j=1

∑∞
i=1 aij = 1

That said, under some mild conditions, we can interchange the two
sums. It’s like a Fubini theorem but for series:
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Theorem: [Fubini for series]

If
∞∑
i=1

∞∑
j=1

|aij| <∞ then
∞∑
i=1

∞∑
j=1

aij =
∞∑
j=1

∞∑
i=1

aij

The above means that if bi =:
∑∞

j=1 |aij| and
∑

i bi converges, then we
can interchange the two sums.

In the above example, we got bi = 2 and
∑

i bi =
∑

2 =∞

Proof: Really elegant!

STEP 1: Let xn be the sequence xn = 1
n and define the sequence of

functions {fi}∞i=0 by:

fi (xn) =
n∑

j=1

aij (Partial Sum)

fi (0) =
∞∑
j=1

aij (Series)

Define g(x) =
∞∑
i=1

fi(x), x ∈ {0, x1, x2, · · · }

Claim # 1: Each fi is continuous at 0

lim
n→∞

fi(xn)
DEF
= lim

n→∞

n∑
j=1

aij =
∞∑
j=1

aij = fi(0)X

Claim # 2: g is continuous at 0

Notice that for all x, we have
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|fi(x)| ≤
∞∑
j=1

|aij| = bi

And since
∑∞

i=1 bi converges, by the WeierstraßM -test, the series defin-
ing fi converges uniformly, and since each fi(x) is continuous at 0, it
follows that g is continuous at 0. X

STEP 2: Main Proof

∞∑
i=1

∞∑
j=1

aij
DEF
=

∞∑
i=1

fi(0)
DEF
= g(0)

CONT
= lim

n→∞
g(xn)

DEF
= lim

n→∞

∞∑
i=1

fi(xn)

DEF
= lim

n→∞

∞∑
i=1

n∑
j=1

aij = lim
n→∞

∞∑
i=1

ai1 + ai2 + · · ·+ ain

= lim
n→∞

∞∑
i=1

ai1 +
∞∑
i=1

ai2 + · · ·+
∞∑
i=1

ain Sum of n convergent series

= lim
n→∞

n∑
j=1

∞∑
i=1

aij
DEF
=

∞∑
j=1

∞∑
i=1

aij

3. Taylor’s Theorem

Finally, let’s answer the famous Taylor question: If f has a power se-
ries about x = 0, does it have a power series about other points x = a
as well?

Yes, provided a is the interval of convergence of f :

Theorem: [Taylor’s Theorem]

Suppose f(x) has a power series converging in (−R,R)
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f(x) =
∞∑
n=0

cnx
n

Then, if a ∈ (−R,R), then f also has a power series about x = a

f(x) =
∞∑
n=0

dn (x− a)n

This power series converges if |x− a| < r, where r = R− |a|

Notice: The closer a is to R, the smaller r is (see picture in lecture)

Proof: Surprising application of the previous theorem:

f(x) =
∞∑
n=0

cnx
n

=
∞∑
n=0

cn ((x− a) + a)n

=
∞∑
n=0

n∑
m=0

cn

(
n

m

)
(x− a)man−m (Binomial Theorem)

?
=
∞∑

m=0

∞∑
n=m

cn

(
n

m

)
an−m(x− a)m (see picture in lecture)

=
∞∑

m=0

( ∞∑
n=m

(
n

m

)
cna

n−m

)
︸ ︷︷ ︸

dm

(x− a)m

So we are done if we can justify the interchange of the sums. But
for this we can use the Fubini theorem for series, which says it’s ok
provided that the following series converges
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∞∑
n=0

n∑
m=0

∣∣∣∣cn(nm
)

(x− a)man−m
∣∣∣∣

=
∞∑
n=0

|cn|
n∑

m=0

(
n

m

)
|x− a|m |a|n−m

=
∞∑
n=0

|cn| (|x− a|+ |a|)n Binomial Theorem

And since the radius of convergence of
∑
cnx

n is R, this converges
provided that |x− a|+ |a| < R that is |x− a| < R− |a| = r, which is
what we wanted �

Note: Of course, once the power series exist, we have dn = f (n)(a)
n! and

we get the expansion

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n

4. The Gamma Function

The following has nothing to do with series, but is a special function
that is used a lot in math and physics, and is especially popular in the
YouTube world ,

Definition:

Γ(x) =

∫ ∞
0

tx−1e−tdt

This is defined at least when x ≥ 1, but can be extended to the case
(0,∞)
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It is a generalization of the factorial function, mainly because of the
following fact:

Fact: For all x ≥ 1 we have

Γ(x+ 1) = xΓ(x)

Notice how similar this is to the identity (n+ 1)! = (n+ 1)n!

Proof:

Γ(x+ 1) =

∫ ∞
0

txe−tdt

IBP
=
[
tx
(
−e−t

)]∞
0
−
∫ ∞
0

xtx−1
(
−e−t

)
dt

=0 + x

∫ ∞
0

tx−1e−tdt

=xΓ(x)

Corollary: Γ(n+ 1) = n! for n = 0, 1, 2, . . .

Proof: By induction on n

Base Case:

Γ(1) =

∫ ∞
0

t1−1e−tdt =
[
−e−t

]∞
0

= 0 + 1 = 1 = 0!X

Inductive Step:

Γ(n+ 2) = (n+ 1)Γ(n+ 1) = (n+ 1)n! = (n+ 1)!X �

Fact:
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Γ

(
1

2

)
=
√
π

Proof:

Γ

(
1

2

)
=

∫ ∞
0

t−
1
2e−tdt = 2

∫ ∞
0

e−u
2

du =

∫ ∞
−∞

e−u
2

du =
√
π

Here we used the u−sub u =
√
t so du = 1

2
√
t
dt, as well as the famous

Gaussian Integral

The Gamma function is useful in the evaluation of some integrals, see
Rudin for examples. Here is an even cooler application:

5. Optional: The Half Derivative

Video: Half Derivative

Question: What is the half derivative of x?

More precisely we would like an operation D
1
2 in such a way that

D
1
2

(
D

1
2x
)

= Dx = 1

Notice:

Dxn =nxn−1

D2xn =n(n− 1)xn−2 =
n!

(n− 2)!
xn−2

Dkxn =
n!

(n− k)!
xn−k

https://www.youtube.com/watch?v=r9W8YWELXvg
https://www.youtube.com/watch?v=gaAhCTDc6oA
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So by analogy, we should define

D
1
2xn =

n!(
n− 1

2

)
!
xn−

1
2

Since factorials are not defined for non-integers, we need to use the
Gamma function, and in fact we get

Definition:

D
1
2xn =

Γ(n+ 1)

Γ
(
n+ 1

2

)xn− 1
2

This is valid even if n is not an integer, and you can check that this
definition does its job:

Fact:
D

1
2

(
D

1
2xn
)

= nxn−1

In the case n = 1 we get the more explicit formula:

D
1
2x =

Γ(2)

Γ
(
3
2

)x 1
2

Γ(2) =1! = 1

Γ

(
3

2

)
=

1

2
Γ

(
1

2

)
=

1

2

√
π =

√
π

2

Hence D
1
2x =

2√
π

√
x = 2

√
x

π

Applications: Fractional derivatives are used in physics to describe
broken processes. There are also fractional differential equations in
PDE. Check out this playlist if you want to learn more about fractional
derivatives.

https://www.youtube.com/watch?v=gaAhCTDc6oA&list=PLJb1qAQIrmmB_ma3YrfuOXTPOQawokYV_
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