
LECTURE 7: INFINITE LIMITS, MONOTONE
SEQUENCES

1. Example 8: Exponential Limit

Video: Limit Example 8: Exponential

Let’s continue our exploration of exponential limits!

Example 8:

If |a| < 1, then lim
n→∞

an = 0

Proof: Assume a ̸= 0 (the case a = 0 is trivial)

STEP 1: Scratch work:

|sn − s| = |an − 0| = |a|n

Clever Observation: Since |a| < 1, we can write |a| = 1
1+b for some

b > 0, namely b = 1
|a| − 1.

(Example: If |a| = 2
3 , then

2
3 =

1
3
2

= 1
1+ 1

2

, so b = 1
2).

Hence |a|n = 1
(1+b)n
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https://youtu.be/qxlSclbmh-w
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But by the binomial theorem:

(1 + b)n = 1n + n1n−1b+ Positive terms ≥ 1 + nb > nb

Hence |a|n =
1

(1 + b)n
<

1

nb
< ϵ ⇒ 1

n
< bϵ ⇒ n >

1

bϵ

Which suggests to use N = 1
bϵ

STEP 2: Let ϵ > 0 be given, let N = 1
bϵ , then if n > N , we have

|an − 0| = |a|n =
1

(b+ 1)n
<

1

nb
<

1

b

(
1

n

)
<

1

b
(bϵ) = ϵ✓

Hence limn→∞ an = 0 □

2. Example 9: Don’t use L’Hôpital

Video: Limit Example 9: n
1
n

Example 9:

lim
n→∞

n
1
n = 1

Proof: Let sn = n
1
n − 1 and show sn → 0.

The idea is to use the Squeeze Theorem. On the one hand, since
n ≥ 1 ⇒ n

1
n ≥ 1

1
n = 1, so sn = n

1
n − 1 ≥ 0 (So our lower function is 0).

On the other hand, notice 1+sn = n
1
n , so (1+sn)

n = n, and therefore,
by the binomial theorem (this time with more terms):

https://youtu.be/Y-kfkpB_4P4
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n =(1 + sn)
n

=1n + n1n−1sn +
n(n− 1)

2
1n−2(sn)

2 + Positive terms

=1 + nsn +
n(n− 1)

2
(sn)

2 + Positive terms

>
n(n− 1)

2
(sn)

2

Hence
n(n− 1)

2
(sn)

2 < n

⇒(n− 1)(sn)
2 < 2

⇒sn <

√
2

n− 1

Therefore we get 0 ≤ sn <
√

2
n−1 and a standard squeeze theorem

argument shows that sn = n
1
n − 1 → 0, hence n

1
n → 1 □

Corollary:

lim
n→∞

a
1
n = 1 (If a > 0)

Example: 2
1
n → 1.

Proof:

Case 1: a ≥ 1

Then, on the one hand, a
1
n ≥ 1

1
n = 1, but on the other hand, if n is

large (more specifically n ≥ a), then n
1
n ≥ a

1
n and so 1 ≤ a

1
n ≤ n

1
n ,
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and the squeeze theorem (and Example 9) takes care of the rest.

Case 2: 0 < a < 1

Then lim
n→∞

a
1
n = lim

n→∞

(
1
1
a

) 1
n

= lim
n→∞

1(
1
a

) 1
n

=
1

limn→∞
(
1
a

) 1
n

=
1

1
= 1✓ □

In the last step we used 1
a > 1 and so limn→∞

(
1
a

) 1
n = 1 (by Case 1) □.

3. Infinite Limits

Video: Limit Example 10: Infinite Limits

Finally, what does it mean for a sequence sn to go to ∞? It just means
that sn eventually becomes bigger than any number we want.

Definition:

(a) limn→∞ sn = ∞ means:

For all M there is N such that if n > N , then sn > M

https://youtu.be/2_DcTWx18nM
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Definition:

(b) limn→∞ sn = −∞ means:

For all M there is N such that if n > N , then sn < M

Example 10:

lim
n→∞

√
n− 2 + 3 = ∞

STEP 1: Find N
√
n− 2+3 > M ⇒

√
n− 2 > M−3 ⇒ n−2 > (M−3)2 ⇒ n > (M−3)2+2

This suggests to let N = (M − 3)2 + 2

STEP 2: Let M > 0 be given, let N = (M − 3)2 + 2, then if n > N ,
we have (assume M > 3)

√
n− 2+3 >

√
(M − 3)2 + 2− 2+3 =

√
(M − 3)2+3 = M−3+3 = M✓

Hence limn→∞
√
n− 2 + 3 = ∞ □
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4. Some Infinite Limit Laws

Video: Infinite Limit Laws

We can also prove limit laws for infinite limits:

Fact:

Suppose limn→∞ sn = ∞ and limn→∞ tn = t > 0 (or t = ∞) then

lim
n→∞

sntn = ∞

(In other words, ∞× t = ∞)

STEP 1: Scratchwork

In either case (t > 0 or t = ∞), if n is large enough, then tn > m for
some m > 0

Hence sntn ≥ msn and this is > M if sn > M
m .

STEP 2: Let M > 0 be given.

Then there is m > 0 and N1 such that if n > N1, then tn > m.

Now since sn → ∞, there is N2 such that if n > N2, then sn > M
m .

Let N = max {N1, N2}, then if n > N , we have:

sntn ≥ sn(m) >

(
M

m

)
m = M✓

Hence limn→∞ sntn = ∞.

https://youtu.be/OoqvGVmB4q4
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5. Duality

Video: Duality Theorem

Finally, the following theorem illustrates the beautiful relationship be-
tween finite and infinite limits.

Duality Theorem:

If sn > 0 for all n, then

lim
n→∞

sn = ∞ ⇔ lim
n→∞

1

sn
= 0

Example: We know limn→∞
(
1
2

)n
= 0 (Example 8 with a = 1

2), hence

lim
n→∞

1(
1
2

)n = ∞ so lim
n→∞

2n = ∞

Proof:

(⇒) Let ϵ > 0 be given

Let M = 1
ϵ > 0. Since sn → ∞, there is N such that for all n > N ,

sn > M = 1
ϵ .

But then for that same N , if n > N , we have:∣∣∣∣ 1sn − 0

∣∣∣∣ = 1

|sn|
=

1

sn
<

1

M
=

1
1
ϵ

= ϵ✓

Hence limn→∞
1
sn

= 0

https://youtu.be/a3SuYtoCXas
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(⇐) Let M > 0 be given

Let ϵ = 1
M . Then since 1

sn
→ 0 there is N such that for all n > N ,∣∣∣ 1

sn

∣∣∣ = 1
sn

< ϵ = 1
M .

But then, for that same N , if n > N , we have:

sn >
1

ϵ
=

1
1
M

= M✓

Hence limn→∞ sn = ∞. □

Isn’t this proof elegant? This is Analysis at its finest! ,

6. Monotone Sequence Theorem

Video: Monotone Sequence Theorem

Notice how annoying it is to show that a sequence explicitly converges,
and it would be nice if we had some easy general theorems that guar-
antee that a sequence converges.

Definition:

(sn) is increasing if sn+1 > sn for all n

(sn) is decreasing if sn+1 < sn for all n

If either of the above holds, we say that (sn) is monotonic.

https://youtu.be/vcobLxuAXlw
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Examples: sn =
√
n is increasing, sn = 1

n is decreasing, sn = (−1)n

is neither increasing nor decreasing.

The following theorem gives a very elegant criterion for a sequence to
converge, and explains why monotonicity is so important.

(Important) Monotone Sequence Theorem:

(sn) is increasing and bounded above, then (sn) converges.

Note: The same proof works if (sn) is nondecreasing (sn+1 ≥ sn)

Intuitively: If (sn) is increasing and has a ceiling, then there’s no way
it cannot converge. In fact, try drawing a counterexample, and you’ll
see that it doesn’t work!
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WARNING: Just because (sn) is bounded above by M , this does
NOT imply that sn converges to M , as the following picture shows.
But what is true is that sn converges to the sup of all the sn
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Proof: Elegant interplay between sup (section 4) and convergence
(section 8)

STEP 1: Consider
S =: {sn | n ∈ N}

Since sn ≤ M for all M , S is bounded above, hence S has a least upper
bound s =: sup(S)

Claim: limn→∞ sn = s.

STEP 2: Let ϵ > 0 be given.

We need to find N such that if n > N , then |sn − s| < ϵ.

Consider s − ϵ < s. By definition of a sup, this means that there is
sN ∈ S such that sN > s− ϵ

But then, for that N , if n > N , since (sn) is increasing, we have

sn − s > sN − s > −ϵ ⇒ sn − s > −ϵ
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On the other hand, since s = sup(S), we have sn ≤ s for all s and so

sn − s ≤ s− s = 0 < ϵ ⇒ sn − s < ϵ

Combining, we get:

−ϵ < sn − s < ϵ ⇒ |sn − s| < ϵ

And so (sn) converges to s □

By considering −sn we get the following corollary:

Corollary:

(sn) is decreasing and bounded below, then (sn) converges.

Why? In that case (−sn) is increasing and bounded above, so con-
verges to some s, and therefore (sn) converges to −s (or repeat the
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above proof, but with inf) □

In fact: We don’t even need (sn) to be bounded above, provided that
we allow ∞ as a limit.

Theorem:

(sn) is increasing, then it either converges or goes to ∞

So there are really just 2 kinds of increasing sequences: Either those
that converge or those that blow up to ∞.

Proof:

Case 1: (sn) is bounded above, but then by the Monotone Sequence
Theorem, (sn) converges ✓

Case 2: (sn) is not bounded above, and we claim that limn→∞ sn = ∞.
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Let M > 0 be given, want to find N such that if n > N , then sn > M .

First, there must be N such that sN > M , because otherwise sN ≤ M
for all N and so M would be an upper bound for (sn) ⇒⇐

With that N , if n > N , then since (sn) is increasing, we get sn > sN =
M , so sn > M and hence sn goes to ∞ ✓ □

Finally, notice that the proof of the Monotone Sequence Theorem uses
the Least-Upper Bound Property (because we defined sup), but in fact
something even more amazing is true:

Cool Fact:

The Least Upper Bound Property is equivalent to the Monotone
Sequence Theorem! (WOW)
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7. Decimal Expansions (optional)

Video: Decimal Expansions

As an application of the Monotone Sequence Theorem, we can con-
struct the real numbers via decimal expansions.

Motivation: What does is mean for π = 3.1415 · · · ?

Notice:

π =3 +
1

10
+

4

100
+

1

1000
+ · · ·

=3 +
1

10
+

4

102
+

1

103
+ · · ·

=k +
d1
10

+
d2
102

+
d3
103

+ · · ·

Now consider the following sequence (sn)

s0 =3 = k

s1 =3.1 = k +
d1
10

s2 =3.14 = k +
d1
10

+
d2
102

s3 =3.141 = k +
d1
10

+
d2
102

+
d3
103

sn =3.1415 · · · dn = k +
d1
10

+
d2
102

+ · · ·+ dn
10n

Notice that (sn) is bounded above by 4 = k + 1 and moreover, (sn)
is increasing (since we’re only adding positive terms), therefore by the
monotone sequence theorem, (sn) is converging to s, and this limit is
what we call

https://youtu.be/oUEkllO946s
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π = 3.1415 · · · = k.d1d2d3 · · ·

So, in some sense, it is reasonable to define real numbers as follows:

Definition:

R is the set of all numbers of the form

k.d1d2 · · ·

Where k ∈ Z and each di is a digit between 0 and 9 (and · · · is
to be understood in the limit sense as above)

Of course, this leaves many questions to be unanswered, such as: “Does
every real number (such as

√
2) even have a decimal expansion?” or

“How can you show that a rational number is a real number?” Those
questions are answered in section 16 (which we won’t cover)

More importantly, how would you show that R (as constructed above)
has the least-upper bound property?

There is actually a small glitch in the above definition. For this we
need the following formula, which you might remember from calculus
(for a proof, see exercise 9.18):

Geometric Series:

If |r| < 1, then

lim
n→∞

1 + r + r2 + · · ·+ rn =
1

1− r
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0.99999 · · · = 9

10
+

9

102
+

9

103
+ · · ·

=
9

10

(
1 +

1

10
+

1

102
+ · · ·

)
=

9

10

(
1

1− 1
10

)
=

9

10

(
1
9
10

)
=1

So actually we have 0.999999 · · · = 1.00000 · · · , so both of those deci-
mal expansions actually represent the same real number! So the above
construction is bad in the sense that different decimal expansions might
give you the same number.

There is an easy way to get around that, actually: In the above con-
struction, simply throw away decimal expansions that end with an
infinite string of 9′s. That is, in the above definition, consider just the
decimal expansions that don’t end with 9′s.
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