LECTURE 7: VECTOR FUNCTIONS (II)

Welcome to the second part of our vector function extravaganza, and let's continue with tangent vectors:

1. Unit Tangent Vector

Sometimes it's useful to have the tangent vector have length 1. This is called the unit tangent vector:

Example 1:

Find the unit tangent vector $\mathbf{T}(t)$ to the curve $\mathbf{r}(t)=\left\langle t, t^{2}, 2 t^{2}\right\rangle$
First find the tangent vector:

$$
\mathbf{r}^{\prime}(t)=\langle 1,2 t, 4 t\rangle
$$

Unit just means "Has Length 1 "

Recall:

For any vector $\mathbf{u}, \frac{\mathbf{u}}{\|\mathbf{u}\|}$ has length 1

Date: Monday, September 13, 2021.

Definition:

The unit tangent vector to $\mathbf{r}(t)$ is

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}
$$

(Same direction as $\mathbf{r}^{\prime}(t)$, but length 1)

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\langle 1,2 t, 4 t\rangle \\
\left\|\mathbf{r}^{\prime}(t)\right\| & =\sqrt{1+(2 t)^{2}+(4 t)^{2}}=\sqrt{1+4 t^{2}+16 t^{2}}=\sqrt{1+20 t^{2}}
\end{aligned}
$$

And therefore:

$$
\begin{aligned}
\mathbf{T}(t) & =\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|} \\
& =\frac{1}{\sqrt{1+20 t^{2}}}\langle 1,2 t, 4 t\rangle \\
& =\left\langle\frac{1}{\sqrt{1+20 t^{2}}}, \frac{2 t}{\sqrt{1+20 t^{2}}}, \frac{4 t}{\sqrt{1+20 t^{2}}}\right\rangle
\end{aligned}
$$

(And in fact you can check that $\mathbf{T}(t)$ has length 1)
Note: It is not immediately apparent why this is useful, but there are some theorems where you have to use the unit tangent vector in order to make the formulas work.

Example 2:

Find $\mathbf{T}(0)$, where $\mathbf{r}(t)=\left\langle 1, e^{t}, e^{2 t}\right\rangle$
Here it is a bit easier than the previous problem:

$$
\begin{gathered}
\mathbf{r}^{\prime}(t)=\left\langle 0, e^{t}, 2 e^{2 t}\right\rangle \\
\mathbf{r}^{\prime}(0)=\left\langle 0, e^{0}, 2 e^{2(0)}\right\rangle=\langle 0,1,2\rangle \\
\mathbf{T}(0)=\frac{\mathbf{r}^{\prime}(0)}{\left\|\mathbf{r}^{\prime}(0)\right\|}=\frac{\langle 0,1,2\rangle}{\|\langle 0,1,2\rangle\|}=\frac{1}{\sqrt{5}}\langle 0,1,2\rangle=\left\langle 0, \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right\rangle
\end{gathered}
$$

2. Arclength

You can also use vector equations to calculate the length of a curve.

Fact:

The length of a curve $\mathbf{r}(t)=\langle x(t), y(t)\rangle$ from $t=a$ to $t=b$ is

$$
\text { Length }=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

Why?

STEP 1: Approximate the curve with little segments of length $d s$ (as in the figure above).

STEP 2: By the Pythagorean Theorem, the length of each little segment is

$$
d s=\sqrt{(d x)^{2}+(d y)^{2}}
$$

Where $d x$ is a small change in x and $d y$ is a small change in y
STEP 3: However, by the chain rule, we have

$$
\begin{aligned}
& d x=\left(\frac{d x}{d t}\right) d t=x^{\prime}(t) d t \\
& d y=\left(\frac{d y}{d t}\right) d t=y^{\prime}(t) d t
\end{aligned}
$$

And therefore, we get:

$$
\begin{aligned}
d s & =\sqrt{(d x)^{2}+(d y)^{2}} \\
& =\sqrt{\left(x^{\prime}(t) d t\right)^{2}+\left(y^{\prime}(t) d t\right)^{2}} \\
& =\sqrt{\left(x^{\prime}(t)\right)^{2}(d t)^{2}+\left(y^{\prime}(t)\right)^{2}(d t)^{2}} \\
& =\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} \sqrt{(d t)^{2}} \\
& =\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
\end{aligned}
$$

STEP 4: Finally, to get the length of the curve, sum up/integrate the little segments to get:

$$
\text { Length }=\int_{a}^{b} d s=\int_{a}^{b} \sqrt{(d x)^{2}+(d y)^{2}}=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

In 3 dimensions it's exactly the same:

Example 3: (Good Quiz/Exam Question)

Find the length of the helix $\mathbf{r}(t)=\langle 2 \cos (5 t), 2 \sin (5 t), 3 t\rangle$ from $t=0$ to $t=6 \pi$

Fact:

$$
\text { Length }=\int_{0}^{6 \pi} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t
$$

Here this becomes:

$$
\begin{aligned}
\text { Length } & =\int_{0}^{6 \pi} \sqrt{(-2 \sin (5 t)(5))^{2}+(2 \cos (5 t)(5))^{2}+3^{2}} d t \\
& =\int_{0}^{6 \pi} \sqrt{(-10)^{2} \sin ^{2}(5 t)+(10)^{2} \cos ^{2}(5 t)+9} d t \\
& =\int_{0}^{6 \pi} \sqrt{100\left(\sin ^{2}(5 t)+\cos ^{2}(5 t)\right)+9} d t \\
& =\int_{0}^{6 \pi} \sqrt{100+9} d t
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{6 \pi} \sqrt{109} d t \\
& =\sqrt{109}(6 \pi-0) \\
& =6 \pi \sqrt{109}
\end{aligned}
$$

Example 4: (Good Quiz/Exam Question)

Find the length of the curve $\mathbf{r}(t)=\left\langle\frac{1}{2} e^{2 t}, 2 e^{t}, 2 t\right\rangle$ from $t=0$ to $t=3$

$$
\begin{aligned}
\text { Length } & =\int_{0}^{3} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}} d t \\
& =\int_{0}^{3} \sqrt{\left(\frac{1}{2} 2 e^{2 t}\right)^{2}+\left(2 e^{t}\right)^{2}+2^{2}} d t \\
& =\int_{0}^{3} \sqrt{e^{4 t}+4 e^{2 t}+4} d t \\
& =\int_{0}^{3} \sqrt{\left(e^{2 t}\right)^{2}+2\left(e^{2 t}\right)(2)+2^{2}} d t \\
& =\int_{0}^{3} \sqrt{\left(e^{2 t}+2\right)^{2}} d t \\
& =\int_{0}^{3} e^{2 t}+2 d t \\
& =\left[\frac{1}{2} e^{2 t}+2 t\right]_{0}^{3} \\
& =\frac{1}{2} e^{6}+2(3)-\frac{1}{2} e^{0}-2(0) \\
& =\frac{e^{6}}{2}+\frac{11}{2}
\end{aligned}
$$

3. Dot and Cross Products

One new thing we can do with vector functions is take dot products and cross products (since they're vectors after all)

Example 5:

Find $(\mathbf{r} \cdot \mathbf{s})(t)$ and $(\mathbf{r} \times \mathbf{s})(t)$, where $\mathbf{r}(t)=\langle 1, t, 2 t\rangle$ and $\mathbf{s}(t)=$ $\left\langle t, 2 t^{2}, 3 t\right\rangle$

$$
\begin{aligned}
(\mathbf{r} \cdot \mathbf{s})(t) & \stackrel{D E F}{=} \mathbf{r}(t) \cdot \mathbf{s}(t) \\
& =\langle 1, t, 2 t\rangle \cdot\left\langle t, 2 t^{2}, 3 t\right\rangle \\
& =(1)(t)+(t)\left(2 t^{2}\right)+(2 t)(3 t) \\
& =t+2 t^{3}+6 t^{2}
\end{aligned}
$$

Notice this is a scalar function and $(\mathbf{r} \cdot \mathbf{s})^{\prime}(t)=1+6 t^{2}+12 t$
The nice thing is that the product rule (Prada Lu) is true for dot products:

Dot Product Rule:

$$
(\mathbf{r} \cdot \mathbf{s})^{\prime}(t)=\mathbf{r}^{\prime}(t) \cdot \mathbf{s}(t)+\mathbf{r}(t) \cdot \mathbf{s}^{\prime}(t)
$$

For the cross product it's similar:

$$
\begin{aligned}
(\mathbf{r} \times \mathbf{s})(t) & \stackrel{\text { DEF }}{=} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & t & 2 t \\
t & 2 t^{2} & 3 t
\end{array}\right| \\
& =\left|\begin{array}{cc}
t & 2 t \\
2 t^{2} & 3 t
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
1 & 2 t \\
t & 3 t
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
1 & t \\
t & 2 t^{2}
\end{array}\right| \mathbf{k} \\
& =\left(3 t^{2}-4 t^{3}\right) \mathbf{i}-\left(3 t-2 t^{2}\right) \mathbf{j}+\left(2 t^{2}-t^{2}\right) \mathbf{k} \\
& =\left\langle 3 t^{2}-4 t^{3},-3 t+2 t^{2}, t^{2}\right\rangle
\end{aligned}
$$

Here the cross product is a vector function. And here the nice thing again is that the Prada Lu is true for cross products:

Cross Product Rule:

$$
(\mathbf{r} \times \mathbf{s})^{\prime}(t)=\mathbf{r}^{\prime}(t) \times \mathbf{s}(t)+\mathbf{r}(t) \times \mathbf{s}^{\prime}(t)
$$

Here's a small exercise with an interesting geometric interpretation:

Example 6:

Suppose $\|\mathbf{r}(t)\|=3$ (or any constant), show that $\mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)=0$
(I'll tell you the geometric interpretation of this at the end)
Trick: Notice:

$$
\begin{aligned}
\|\mathbf{r}(t)\|^{2} & =3^{2} \\
\mathbf{r}(t) \cdot \mathbf{r}(t) & =9 \\
(\mathbf{r}(t) \cdot \mathbf{r}(t))^{\prime} & =(9)^{\prime}=0 \\
\mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)+\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t) & =0 \quad \text { (Product Rule) } \\
2 \mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t) & =0 \\
\mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t) & =0
\end{aligned}
$$

Interpretation: $\|\mathbf{r}(t)\|=3$ implies that $\mathbf{r}(t)$ lies on a circle (or sphere) centered at the origin and radius 3 , so $\mathbf{r}^{\prime}(t) \cdot \mathbf{r}(t)=0$ is saying that the tangent vector of a circle is perpendicular to its radius:

This is a fact known from geometry, and here we proved it quite elegantly with vector functions!

