
LECTURE 7: VECTOR FUNCTIONS (II)

Welcome to the second part of our vector function extravaganza, and
let’s continue with tangent vectors:

1. Unit Tangent Vector

Sometimes it’s useful to have the tangent vector have length 1. This
is called the unit tangent vector:

Example 1:

Find the unit tangent vector T(t) to the curve r(t) =
〈
t, t2, 2t2

〉
First find the tangent vector:

r′(t) = ⟨1, 2t, 4t⟩
Unit just means “Has Length 1”

Recall:

For any vector u, u
∥u∥ has length 1

Date: Monday, September 13, 2021.
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Definition:

The unit tangent vector to r(t) is

T(t) =
r′(t)

∥r′(t)∥

(Same direction as r′(t), but length 1)

r′(t) = ⟨1, 2t, 4t⟩

∥r′(t)∥ =
√

1 + (2t)2 + (4t)2 =
√
1 + 4t2 + 16t2 =

√
1 + 20t2

And therefore:

T(t) =
r′(t)

∥r′(t)∥

=
1√

1 + 20t2
⟨1, 2t, 4t⟩

=

〈
1√

1 + 20t2
,

2t√
1 + 20t2

,
4t√

1 + 20t2

〉
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(And in fact you can check that T(t) has length 1)

Note: It is not immediately apparent why this is useful, but there
are some theorems where you have to use the unit tangent vector in
order to make the formulas work.

Example 2:

Find T(0), where r(t) =
〈
1, et, e2t

〉
Here it is a bit easier than the previous problem:

r′(t) =
〈
0, et, 2e2t

〉
r′(0) =

〈
0, e0, 2e2(0)

〉
= ⟨0, 1, 2⟩

T(0) =
r′(0)

∥r′(0)∥
=

⟨0, 1, 2⟩
∥⟨0, 1, 2⟩∥

=
1√
5
⟨0, 1, 2⟩ =

〈
0,

1√
5
,
2√
5

〉

2. Arclength

You can also use vector equations to calculate the length of a curve.
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Fact:

The length of a curve r(t) = ⟨x(t), y(t)⟩ from t = a to t = b is

Length =

∫ b

a

√
(x′(t))2 + (y′(t))2dt

Why?

STEP 1: Approximate the curve with little segments of length ds (as
in the figure above).

STEP 2: By the Pythagorean Theorem, the length of each little seg-
ment is

ds =
√

(dx)2 + (dy)2

Where dx is a small change in x and dy is a small change in y

STEP 3: However, by the chain rule, we have
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dx =

(
dx

dt

)
dt = x′(t)dt

dy =

(
dy

dt

)
dt = y′(t)dt

And therefore, we get:

ds =
√

(dx)2 + (dy)2

=
√

(x′(t)dt)2 + (y′(t)dt)2

=
√

(x′(t))2(dt)2 + (y′(t))2(dt)2

=
√

(x′(t))2 + (y′(t))2
√
(dt)2

=
√

(x′(t))2 + (y′(t))2dt

STEP 4: Finally, to get the length of the curve, sum up/integrate the
little segments to get:

Length =

∫ b

a

ds =

∫ b

a

√
(dx)2 + (dy)2 =

∫ b

a

√
(x′(t))2 + (y′(t))2dt □

In 3 dimensions it’s exactly the same:

Example 3: (Good Quiz/Exam Question)

Find the length of the helix r(t) = ⟨2 cos(5t), 2 sin(5t), 3t⟩ from
t = 0 to t = 6π
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Fact:

Length =

∫ 6π

0

√
(x′(t))2 + (y′(t))2 + (z′(t))2dt

Here this becomes:

Length =

∫ 6π

0

√
(−2 sin(5t)(5))2 + (2 cos(5t)(5))2 + 32dt

=

∫ 6π

0

√
(−10)2 sin2(5t) + (10)2 cos2(5t) + 9dt

=

∫ 6π

0

√
100

(
sin2(5t) + cos2(5t)

)
+ 9dt

=

∫ 6π

0

√
100 + 9dt
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=

∫ 6π

0

√
109dt

=
√
109(6π − 0)

=6π
√
109

Example 4: (Good Quiz/Exam Question)

Find the length of the curve r(t) =
〈
1
2e

2t, 2et, 2t
〉
from t = 0 to

t = 3

Length =

∫ 3

0

√
(x′(t))2 + (y′(t))2 + (z′(t))2dt

=

∫ 3

0

√(
1

2
2e2t

)2

+ (2et)2 + 22dt

=

∫ 3

0

√
e4t + 4e2t + 4dt

=

∫ 3

0

√
(e2t)2 + 2 (e2t) (2) + 22dt

=

∫ 3

0

√
(e2t + 2)2dt

=

∫ 3

0

e2t + 2dt

=

[
1

2
e2t + 2t

]3
0

=
1

2
e6 + 2(3)− 1

2
e0 − 2(0)

=
e6

2
+

11

2
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3. Dot and Cross Products

One new thing we can do with vector functions is take dot products
and cross products (since they’re vectors after all)

Example 5:

Find (r · s)(t) and (r × s)(t), where r(t) = ⟨1, t, 2t⟩ and s(t) =〈
t, 2t2, 3t

〉

(r · s)(t) DEF
= r(t) · s(t)
= ⟨1, t, 2t⟩ ·

〈
t, 2t2, 3t

〉
=(1)(t) + (t)

(
2t2

)
+ (2t)(3t)

=t+ 2t3 + 6t2

Notice this is a scalar function and (r · s)′ (t) = 1 + 6t2 + 12t

The nice thing is that the product rule (Prada Lu) is true for dot prod-
ucts:

Dot Product Rule:

(r · s)′(t) = r′(t) · s(t) + r(t) · s′(t)

For the cross product it’s similar:
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(r× s)(t)
DEF
=

∣∣∣∣∣∣
i j k
1 t 2t
t 2t2 3t

∣∣∣∣∣∣
=

∣∣∣∣ t 2t
2t2 3t

∣∣∣∣ i− ∣∣∣∣1 2t
t 3t

∣∣∣∣ j+ ∣∣∣∣1 t
t 2t2

∣∣∣∣k
=
(
3t2 − 4t3

)
i−

(
3t− 2t2

)
j+

(
2t2 − t2

)
k

=
〈
3t2 − 4t3,−3t+ 2t2, t2

〉

Here the cross product is a vector function. And here the nice thing
again is that the Prada Lu is true for cross products:

Cross Product Rule:

(r× s)′(t) = r′(t)× s(t) + r(t)× s′(t)

Here’s a small exercise with an interesting geometric interpretation:

Example 6:

Suppose ∥r(t)∥ = 3 (or any constant), show that r′(t) · r(t) = 0

(I’ll tell you the geometric interpretation of this at the end)

Trick: Notice:
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∥r(t)∥2 =32

r(t) · r(t) =9

(r(t) · r(t))′ =(9)′ = 0

r′(t) · r(t) + r(t) · r′(t) =0 (Product Rule)

2r′(t) · r(t) =0

r′(t) · r(t) =0

Interpretation: ∥r(t)∥ = 3 implies that r(t) lies on a circle (or sphere)
centered at the origin and radius 3, so r′(t) · r(t) = 0 is saying that the
tangent vector of a circle is perpendicular to its radius:

This is a fact known from geometry, and here we proved it quite ele-
gantly with vector functions!
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