LECTURE 7: FOURIER SERIES

Welcome to the magical world of Fourier series! It is an important sub-field of Analysis with lots of applications to physics and PDE. ⿴

1. Introduction

Main Goal: Given a 2π periodic function f, write f as a trigonometric series, that is in the form

$$
f(x)=\sum_{n=0}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x)
$$

Where a_{n} and b_{n} are complex numbers ($b_{0}=0$ by convention)
It's like a power series, except with cos and sin instead of x^{n}
First Observation: Because $e^{i n x}=\cos (n x)+i \sin (n x)$ and the a_{n} and b_{n} are arbitrary, we can write this more compactly as

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

Where c_{n} are complex numbers

A formula for c_{n}

[^0]Fix m, multiply f by $e^{-i m x}$ and formally integrate on $[-\pi, \pi]$ to get

$$
\int_{-\pi}^{\pi} f(x) e^{-i m x} d x=\int_{-\pi}^{\pi}\left(\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}\right) e^{-i m x} d x=\sum_{n=-\infty}^{\infty} c_{n} \int_{-\pi}^{\pi} e^{i(n-m) x} d x
$$

But if $n \neq m$ we get

$$
\begin{aligned}
\int_{-\pi}^{\pi} e^{i(n-m) x} d x & =\left[\frac{e^{i(n-m) x}}{i(n-m)}\right]_{-\pi}^{\pi}=\frac{1}{i(n-m)}\left(e^{i(n-m) \pi}-e^{i(n-m)(-\pi)}\right) \\
& =\frac{1}{i(n-m)}(\underline{\cos ((n-m) \pi)+i \sin ((n-m) \pi)} 0 \\
& -\underset{\cos ((n-m)(-\pi))}{ }-i \sin ((n=m)(-\pi))) \\
& =0
\end{aligned}
$$

(Here we used the fact that cos is even)
And if $n=m$ then we get

$$
\int_{-\pi}^{\pi} e^{i(m-m) x} d x=\int_{-\pi}^{\pi} 1 d x=2 \pi
$$

So in the end, the sum above just becomes

$$
\int_{-\pi}^{\pi} f(x) e^{-i m x} d x=2 \pi c_{m} \Rightarrow c_{m}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i m x} d x
$$

Which gives us an explicit formula for c_{n}
Fact: If $f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$ on $[-\pi, \pi]$, then (at least formally)

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

This is an an analog of $\frac{f^{(n)}(0)}{n!}$ but for trig series.
Because of this, it makes sense to define
Definition: [n-th Fourier coefficient]

$$
\hat{f}(n)=: \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

Example: Consider $f(x)=x$ on $[-\pi, \pi]$
Using an integration by parts, you can show that if $n \neq 0$, then

$$
\begin{gathered}
\hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x e^{-i n x} d x=\frac{(-1)^{n+1}}{i n} \\
\text { and } \hat{f}(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x d x=0
\end{gathered}
$$

Therefore the Fourier series of f is

$$
\sum_{n \neq 0} \frac{(-1)^{n+1}}{i n} e^{i n x}=2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n x)
$$

Were we have used that $\frac{e^{i n x}-e^{-i n x}}{2 i}=\sin (n x)$
To study Fourier series more rigorously, we need partial sums.
Definition: The N-th partial sum of the Fourier series of f on $(-\pi, \pi)$ is

$$
S_{N}(f)(x)=\sum_{n=-N}^{N} \hat{f}(n) e^{i n x} \quad \quad \text { (Trig Polynomial) }
$$

Main Goal: In what sense does $S_{N}(f)$ converge to f as $N \rightarrow \infty$?
Remark: Here we mainly focus on the interval $[-\pi, \pi]$. The same thing works on other intervals. For example, if f is periodic of period 1 , then on $[0,1]$ we get

$$
\begin{aligned}
& f(x)=\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{2 \pi i n x} \\
& \hat{f}(n)=\int_{0}^{1} f(x) e^{-2 \pi i n x} d x
\end{aligned}
$$

Here instead of $\frac{1}{2 \pi}$ we have $\frac{1}{1}=1$

2. UniquENESS

Let's now show that, in some sense, the Fourier series is unique:

Theorem: [Uniqueness]

Let f be a (bounded) integrable 2π periodic function with $\hat{f}(n)=0$ for all n. If f is continuous at x_{0} then $f\left(x_{0}\right)=0$
(In particular, if f is continuous everywhere, then we get $f=0$)
Proof: $]^{2}$ For simplicity, assume $x_{0}=0$ and f is real-valued
STEP 1: By contradiction, suppose $\hat{f}(n)=0$ for all n but $f(0) \neq 0$. WLOG, $f(0)>0$.

[^1]Main Idea: Construct a sequence p_{n} of trig polynomials that "peak" at 0 , in the sense that $\int p_{n}(x) f(x) d x \rightarrow \infty$. This will be a contradiction because, by assumption on $\hat{f}(n)$, those integrals are 0 for all n (see below)

Since f is continuous at 0 , with $\epsilon=\frac{f(0)}{2}$ there is $\delta>0$ such that if $|x|<\delta$ then

$$
|f(x)-f(0)|<\frac{f(0)}{2} \Rightarrow f(x)-f(0)>-\frac{f(0)}{2} \Rightarrow f(x)>\frac{f(0)}{2}
$$

STEP 2: Define $p(x)=\epsilon+\cos (x)$, where $\epsilon>0$ is so small that

$$
|p(x)| \leq 1-\frac{\epsilon}{2} \text { on }|x| \geq \delta
$$

(Something like $\epsilon=\frac{2}{3}(1-\cos (\delta))$ should work, at least around 0)
And choose $\eta>0$ smaller than δ such that

$$
|p(x)| \geq 1+\frac{\epsilon}{2} \text { on }|x| \leq \eta
$$

We can do that because $p(0)=1+\epsilon$ and p is continuous
Finally define our desired sequence p_{n} as

$$
p_{n}(x)=:(p(x))^{n}=(\epsilon+\cos (x))^{n}
$$

Since p_{n} is a trigonometric polynomial and all the Fourier coefficients are zero, it follows that

$$
\int_{-\pi}^{\pi} f(x) p_{n}(x) d x=0 \text { for all } \mathrm{n}
$$

STEP 3: Claim: $\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} f(x) p_{n}(x) d x=\infty$

This would be our desired contradiction.

Proof of Claim:

$$
\int_{-\pi}^{\pi} f(x) p_{n}(x) d x=\left(\int_{|x|<\delta}+\int_{|x| \geq \delta}\right) f(x) p_{n}(x) d x
$$

Study of the second term: Let $M=\sup _{x}|f(x)|$, then

$$
\begin{array}{r}
\left|\int_{|x| \geq \delta} f(x) p_{n}(x) d x\right| \leq \int_{|x| \geq \delta} \underbrace{|f(x)|}_{\leq M}|p(x)|^{n} d x \leq M \int_{-\pi}^{\pi}\left(1-\frac{\epsilon}{2}\right)^{n} d x \\
\\
=2 \pi M \underbrace{\left(1-\frac{\epsilon}{2}\right)^{n}}_{\rightarrow 0}
\end{array}
$$

Study of the first term: Notice that p and f are ≥ 0 on $(-\delta, \delta)$ and therefore since $\eta<\delta$ we get

$$
\int_{-\delta}^{\delta} f(x) p_{n}(x) d x \geq \int_{-\eta}^{\eta} f(x) p_{n}(x) d x \geq \int_{-\eta}^{\eta} \frac{f(0)}{2}\left(1+\frac{\epsilon}{2}\right)^{n} d x=2 \eta \frac{f(0)}{2} \underbrace{\left(1+\frac{\epsilon}{2}\right)^{n}}_{\rightarrow \infty}
$$

Putting both things together we get $\int_{-\pi}^{\pi} f(x) p_{n}(x) d x \rightarrow \infty$
Corollary: If f and g are continuous on $[0,2 \pi]$ and $\hat{f}(n)=\hat{g}(n)$ for all n, then $f=g$

Consider $h=f-g$ then $\hat{h}(n)=0$ for all n, so by the previous claim and by continuity of h, we have $h=0$ everywhere and hence $f=g$

3. Uniform Convergence

Using the result above, we can finally give a positive result to our question of convergence. It's sort of a Weierstraß M test for Fourier series:

Theorem: [Uniform Convergence]
If f is a continuous 2π periodic function and moreover

$$
\sum_{n=-\infty}^{\infty}|\hat{f}(n)|<\infty
$$

Then the Fourier series converges uniformly to f, that is

$$
\lim _{N \rightarrow \infty} S_{N}(f)(x)=f(x) \quad \text { uniformly in } x
$$

Proof: 3^{3} The Fourier series of f is

$$
\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{i n x}
$$

Since $\left|\hat{f}(n) e^{i n x}\right|=|\hat{f}(n)|\left|e^{i n x}\right|=|\hat{f}(n)|$ and $\sum_{n=-\infty}^{\infty}|\hat{f}(n)|$ converges, by the Weierstraß M-test, the above series converges uniformly to some function g, that is

$$
g(x)=\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{i n x}=\lim _{N \rightarrow \infty} \sum_{n=-N}^{N} \hat{f}(n) e^{i n x}
$$

Since the uniform limit of continuous functions is continuous, g is continuous on $[0,2 \pi]$

Moreover, if you repeat the formal calculations at the beginning (with c_{n}), which is now rigorous by uniform convergence, then you get that

[^2]the Fourier coefficients of g are precisely $\hat{f}(n)$. But by definition $\hat{f}(n)$ are the Fourier coefficients of f. So by uniqueness we have $g=f$

In other words, the Fourier series of f converges uniformly to $f \checkmark$
The condition on the Fourier coefficients is quite abstract. Luckily there is an easy case where this holds

4. Twice Differentiable

Theorem: If f is 2π periodic and twice continuously differentiable ($f^{\prime \prime}$ is continuous), then there is $C>0$ such that for all $n \neq 0$,

$$
|\hat{f}(n)| \leq \frac{C}{n^{2}}
$$

Note: Since $\sum_{n \neq 0} \frac{1}{n^{2}}$ converges, the above implies that if f is twice differentiable, then the Fourier series converges to f uniformly

Proof: $:^{4}$

$$
\begin{aligned}
& 2 \pi \hat{f}(n)=\int_{-\pi}^{\pi} f(x) e^{-i n x} d x=\int_{0}^{2 \pi} f(x) e^{-i n x} d x \text { By periodicity } \\
& \stackrel{\text { IBP }}{=}\left[f(x) \frac{-e^{-i n x}}{i n}\right]_{0}^{2 \pi}-\int_{0}^{2 \pi} f^{\prime}(x) \frac{e^{-i n x}}{-i n} d x \\
&=\frac{1}{i n} \int_{0}^{2 \pi} f^{\prime}(x) e^{-i n x} d x \\
&=\frac{1}{i n}\left[f^{\prime}(x) \frac{-e^{-i n x}}{i n}\right]_{0}^{2 \pi}+\frac{1}{(i n)^{2}} \int_{0}^{2 \pi} f^{\prime \prime}(x) e^{-i n x} d x=-\frac{1}{n^{2}} \int_{0}^{2 \pi} f^{\prime \prime}(x) e^{-i n x} d x
\end{aligned}
$$

The terms in brackets vanish since f and f^{\prime} are periodic.

[^3]Let $C=\sup _{x}\left|f^{\prime \prime}(x)\right|$, then

$$
2 \pi|\hat{f}(n)| \leq \frac{1}{n^{2}} \int_{0}^{2 \pi} \underbrace{\left|f^{\prime \prime}(x)\right|}_{\leq C} \underbrace{\left|e^{-i n x}\right|}_{1} d x=\frac{2 \pi C}{n^{2}}
$$

Hence $|\hat{f}(n)| \leq \frac{C}{n^{2}}$, as desired.
Remark: The smoother f, the faster the decay. For example, if f is thrice differentiable, then we get $|\hat{f}(n)| \leq \frac{C}{|n|^{3}}$ but if f is only once differentiable, then $|\hat{f}(n)| \leq \frac{C}{|n|}$

Remark: This is only a sufficient condition. One can show that uniform convergence holds even if f is just once differentiable, even though $\sum_{n \neq 0} \frac{1}{|n|}$ diverges.

[^0]: Date: Wednesday, July 13, 2022.
 ${ }^{1}$ The presentation follows the book Fourier Analysis: An Introduction by Stein and Shakarchi, and goes a bit deeper than Chapter 8 in Rudin

[^1]: ${ }^{2}$ The proof is taken from Theorem 2.1 in Stein and Shakarchi

[^2]: 3^{3} This proof is taken from Corollary 2.3 in Stein and Shakarchi

[^3]: ${ }^{4}$ The proof is taken from Corollary 2.4 in the Stein and Shakarchi book

