LECTURE 7: FOURIER SERIES

Welcome to the magical world of Fourier series! It is an important
sub-field of Analysis with lots of applications to physics and PDE. []

1. INTRODUCTION

Main Goal: Given a 27 periodic function f, write f as a trigono-
metric series, that is in the form

oo

f(z) = Z an cos(nx) + by, sin(nx)

n=0

Where a,, and b,, are complex numbers (by = 0 by convention)

It’s like a power series, except with cos and sin instead of z”

inT

First Observation: Because e = cos(nx) + isin(nx) and the a,
and b, are arbitrary, we can write this more compactly as

f(:c): Z Cnemx

n=—oo

Where ¢,, are complex numbers

A formula for ¢,

Date: Wednesday, July 13, 2022.
!The presentation follows the book Fourier Analysis: An Introduction by Stein and Shakarchi,
and goes a bit deeper than Chapter 8 in Rudin



2 LECTURE 7: FOURIER SERIES

Fix m, multiply f by e™* and formally integrate on [—, 7] to get

/ f(x)e—zmmdx _ / ( Z Cneinx) oM o Z Cn/ ei(n—m)mdx

But if n # m we get

/ " pi(n=m)z g, _ .el(n_m)x _ 1 < Giln—m)m _ ei(nm)(w))
iln—m)|__  i(n—m)

-7

0
=i i ) <M+ @M
0
— cos((n— —m)) — isin ((n=m)(—m))

(Here we used the fact that cos is even)
And if n = m then we get

/ elm=—mz g :/ ldx = 27

So in the end, the sum above just becomes
m . 1 [ i
/ flz)e "™ dx = 2mcy, = ¢ = 2—/ flz)e "™ dx
- T J—n
Which gives us an explicit formula for ¢,

Fact: If f(z) = " ¢,e™® on [—7, 7], then (at least formally)

n=—oo

1 (" :
Cn = 5 /_77 f(x)e "™ dx
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( ) but for trig series.

This is an an analog of i
Because of this, it makes sense to define

Definition: [n-th Fourier coefficient]

/ flx)e " da

Example: Consider f(x) = x on [—m7, 7]

Using an integration by parts, you can show that if n # 0, then

f(n) = S /W ze My = (_1—)n+l

2 m

. 1 [
andf(O):%/ xdx =0

Therefore the Fourier series of f is

-1 n+l o -1 n+1
Z #6’” =2 Z =0 sin(nx)
in n
n#0 n=1
Were we have used that em;f_m = sin(nz)

To study Fourier series more rigorously, we need partial sums.

Definition: The N-th partial sum of the Fourier series of f on

(—m,m) is

N
= Z f(n)em (Trig Polynomial)
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Main Goal: In what sense does Sy(f) converge to f as N — oo?
Remark: Here we mainly focus on the interval [—m, 7]. The same

thing works on other intervals. For example, if f is periodic of period
1, then on [0, 1] we get

fla) =37 Flyes

=
fWZAﬂW%MM

Here instead of % we have % =1

2. UNIQUENESS

Let’s now show that, in some sense, the Fourier series is unique:
Theorem: [Uniqueness]

Let f be a (bounded) integrable 27 periodic function with f(n) = 0
for all n. If f is continuous at xy then f(z) =0

(In particular, if f is continuous everywhere, then we get f = 0)

Proof:ﬂ For simplicity, assume x¢o = 0 and f is real-valued

STEP 1: By contradiction, suppose f(n) = 0 for all n but f(0) # 0.
WLOG, f(0) > 0.

2The proof is taken from Theorem 2.1 in Stein and Shakarchi
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Main Idea: Construct a sequence p,, of trig polynomials that “peak”
at 0, in the sense that [ p,(z)f(x)dx — oco. This will be a contradic-

~

tion because, by assumption on f(n), those integrals are 0 for all n
(see below)

Since f is continuous at 0, with ¢ = %0) there is § > 0 such that if
|z| < § then
1@ - 101 <29 5 sy - 50 > LY 5 poy > 10

STEP 2: Define p(x) = € + cos(z), where € > 0 is so small that
pla)] <1—3 on o] >

(Something like € = % (1 — cos(d)) should work, at least around 0)

And choose n > 0 smaller than § such that

€
Ip(z)] > L+ on 2] <7

We can do that because p(0) = 1+ € and p is continuous

Finally define our desired sequence p,, as

pu(z) =t (p(2))" = (€ + cos(z))"
Since p,, is a trigonometric polynomial and all the Fourier coefficients
are zero, it follows that

/7T f(@)py(z)dx = 0 for all n

STEP 3: Claim: lim, . ["_ f(2)p,(z)dz = 0o
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This would be our desired contradiction.

Proof of Claim:

[ romare= ( /| = /| |25) F@)pa(2)de

Study of the second term: Let M = sup, |f(z)|, then

| 228 Fpe)dr) < /:c>6|i<(]fi')’p<x)|nd$ < M/_z (1 - §>nd;c
= QWM@

Study of the first term: Notice that p and f are > 0 on (—4,0) and
therefore since n < § we get

/i f(@)pn(x)dz > /T;f(x)pn(x)dx > /17 f(0) (1 N E)ndib B 277&

Ly 2

Putting both things together we get ["_ f(z)p,(x)dz — oo ]

Corollary: If f and g are continuous on [0,27] and f(n) = §(n) for
all n, then f =g

Consider h = f — g then iz(n) = 0 for all n, so by the previous claim
and by continuity of h, we have h = 0 everywhere and hence f =g [

3. UNIFORM CONVERGENCE
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Using the result above, we can finally give a positive result to our ques-
tion of convergence. It’s sort of a Weierstrafl M test for Fourier series:

Theorem: [Uniform Convergence]

If f is a continuous 27 periodic function and moreover

0]

2.

n=—oo

fn)| < o0
Then the Fourier series converges uniformly to f, that is

lim Sy(f)(z) = f(z) uniformly in x

N—o0

Proof{]| The Fourier series of f is

oo
> fer
n=—oo
Since ‘f(n)emx‘ = f(n)’ }eim’ = ‘f(n)‘ and > 7 )f(n)‘ converges,
by the Weierstrafl M-test, the above series converges uniformly to some
function g, that is

N—o0

g@)= Y fmem = lim S fn)e™

n=—oo

Since the uniform limit of continuous functions is continuous, ¢ is con-
tinuous on [0, 27]

Moreover, if you repeat the formal calculations at the beginning (with
¢n,), which is now rigorous by uniform convergence, then you get that

3This proof is taken from Corollary 2.3 in Stein and Shakarchi
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the Fourier coefficients of ¢ are precisely f (n). But by definition f (n)
are the Fourier coefficients of f. So by uniqueness we have g = f

In other words, the Fourier series of f converges uniformly to f v [

The condition on the Fourier coefficients is quite abstract. Luckily
there is an easy case where this holds

4. TWICE DIFFERENTIABLE

Theorem: If f is 27 periodic and twice continuously differentiable
(f" is continuous), then there is C' > 0 such that for all n # 0,

fo| < 5

Note: Since ) £0 # converges, the above implies that if f is twice
differentiable, then the Fourier series converges to f uniformly

Proof]
T 2w
21 f(n) :/ f(z)e ™ dy = f(z)e "™ dx By periodicity
-7 0
IBP . e—inx 2m 2m e—inx
/
= — d
=] - [ e
1 2 _
— ! —mxd
in ), f(x)e x
_q 27 2 27
1 / —e 1 " —1 1 " —q
_ L nz g
p [f (x) -~ ]0 + i) /. f(x)e T el (x)e T

The terms in brackets vanish since f and f’ are periodic.

AThe proof is taken from Corollary 2.4 in the Stein and Shakarchi book
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Let C' = sup, |f"(z)|, then

- 1 [ in 2nC
2 |fn)] < = [ W) e e =
<C

1

A

f(n)‘ < %, as desired.

Hence

]

Remark: The smoother f, the faster the decay. For example, if f
is thrice differentiable, then we get ’ f (n)‘ < % but if f is only once

[nf”

= In|

differentiable, then ‘ f (n)‘ < &

Remark: This is only a sufficient condition. One can show that uni-
form convergence holds even if f is just once differentiable, even though

D om0 ﬁ diverges.
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