LECTURE 7: FOURIER SERIES

Welcome to the magical world of Fourier series! It is an important sub-field of Analysis with lots of applications to physics and PDE.¹

1. INTRODUCTION

Main Goal: Given a 2π periodic function f, write f as a trigonometric series, that is in the form

$$f(x) = \sum_{n=0}^{\infty} a_n \cos(nx) + b_n \sin(nx)$$

Where a_n and b_n are complex numbers ($b_0 = 0$ by convention)

It's like a power series, except with \cos and \sin instead of x^n

First Observation: Because $e^{inx} = \cos(nx) + i\sin(nx)$ and the a_n and b_n are arbitrary, we can write this more compactly as

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{inx}$$

Where c_n are complex numbers

A formula for c_n

Date: Wednesday, July 13, 2022.

¹The presentation follows the book *Fourier Analysis: An Introduction* by Stein and Shakarchi, and goes a bit deeper than Chapter 8 in Rudin

Fix m, multiply f by e^{-imx} and formally integrate on $[-\pi, \pi]$ to get

$$\int_{-\pi}^{\pi} f(x)e^{-imx}dx = \int_{-\pi}^{\pi} \left(\sum_{n=-\infty}^{\infty} c_n e^{inx}\right) e^{-imx}dx = \sum_{n=-\infty}^{\infty} c_n \int_{-\pi}^{\pi} e^{i(n-m)x}dx$$

But if $n \neq m$ we get

$$\int_{-\pi}^{\pi} e^{i(n-m)x} dx = \left[\frac{e^{i(n-m)x}}{i(n-m)}\right]_{-\pi}^{\pi} = \frac{1}{i(n-m)} \left(e^{i(n-m)\pi} - e^{i(n-m)(-\pi)}\right)$$
$$= \frac{1}{i(n-m)} \left(\underbrace{\cos((n-m)\pi) + i\sin((n-m)\pi)}_{-\cos((n-m)(-\pi))} - \underbrace{\sin((n-m)(-\pi))}_{0}\right)^{0}$$
$$= 0$$

(Here we used the fact that cos is even)

And if n = m then we get

$$\int_{-\pi}^{\pi} e^{i(m-m)x} dx = \int_{-\pi}^{\pi} 1 dx = 2\pi$$

So in the end, the sum above just becomes

$$\int_{-\pi}^{\pi} f(x)e^{-imx}dx = 2\pi c_m \Rightarrow c_m = \frac{1}{2\pi}\int_{-\pi}^{\pi} f(x)e^{-imx}dx$$

Which gives us an explicit formula for c_n

Fact: If $f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$ on $[-\pi, \pi]$, then (at least formally) $c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$ This is an analog of $\frac{f^{(n)}(0)}{n!}$ but for trig series.

Because of this, it makes sense to define

Definition: [*n*-th Fourier coefficient]

$$\hat{f}(n) =: \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$$

Example: Consider f(x) = x on $[-\pi, \pi]$

Using an integration by parts, you can show that if $n \neq 0$, then

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} x e^{-inx} dx = \frac{(-1)^{n+1}}{in}$$

and $\hat{f}(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} x dx = 0$

Therefore the Fourier series of f is

$$\sum_{n \neq 0} \frac{(-1)^{n+1}}{in} e^{inx} = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx)$$

Were we have used that $\frac{e^{inx} - e^{-inx}}{2i} = \sin(nx)$

To study Fourier series more rigorously, we need partial sums.

Definition: The *N*-th **partial sum** of the Fourier series of f on $(-\pi, \pi)$ is

$$S_N(f)(x) = \sum_{n=-N}^{N} \hat{f}(n) e^{inx} \qquad \text{(Trig Polynomial)}$$

Main Goal: In what sense does $S_N(f)$ converge to f as $N \to \infty$?

Remark: Here we mainly focus on the interval $[-\pi, \pi]$. The same thing works on other intervals. For example, if f is periodic of period 1, then on [0, 1] we get

$$f(x) = \sum_{n=-\infty}^{\infty} \hat{f}(n)e^{2\pi i n x}$$
$$\hat{f}(n) = \int_{0}^{1} f(x)e^{-2\pi i n x} dx$$

Here instead of $\frac{1}{2\pi}$ we have $\frac{1}{1} = 1$

2. UNIQUENESS

Let's now show that, in some sense, the Fourier series is unique:

Theorem: [Uniqueness]

Let f be a (bounded) integrable 2π periodic function with $\hat{f}(n) = 0$ for all n. If f is continuous at x_0 then $f(x_0) = 0$

(In particular, if f is continuous everywhere, then we get f = 0)

Proof:² For simplicity, assume $x_0 = 0$ and f is real-valued

STEP 1: By contradiction, suppose $\hat{f}(n) = 0$ for all n but $f(0) \neq 0$. WLOG, f(0) > 0.

4

 $^{^2\}mathrm{The}$ proof is taken from Theorem 2.1 in Stein and Shakarchi

Main Idea: Construct a sequence p_n of trig polynomials that "peak" at 0, in the sense that $\int p_n(x)f(x)dx \to \infty$. This will be a contradiction because, by assumption on $\hat{f}(n)$, those integrals are 0 for all n (see below)

Since f is continuous at 0, with $\epsilon = \frac{f(0)}{2}$ there is $\delta > 0$ such that if $|x| < \delta$ then

$$|f(x) - f(0)| < \frac{f(0)}{2} \Rightarrow f(x) - f(0) > -\frac{f(0)}{2} \Rightarrow f(x) > \frac{f(0)}{2}$$

STEP 2: Define $p(x) = \epsilon + \cos(x)$, where $\epsilon > 0$ is so small that

$$|p(x)| \le 1 - \frac{\epsilon}{2}$$
 on $|x| \ge \delta$

(Something like $\epsilon = \frac{2}{3} (1 - \cos(\delta))$ should work, at least around 0)

And choose $\eta > 0$ smaller than δ such that

$$|p(x)| \ge 1 + \frac{\epsilon}{2}$$
 on $|x| \le \eta$

We can do that because $p(0) = 1 + \epsilon$ and p is continuous

Finally define our desired sequence p_n as

$$p_n(x) =: (p(x))^n = (\epsilon + \cos(x))^n$$

Since p_n is a trigonometric polynomial and all the Fourier coefficients are zero, it follows that

$$\int_{-\pi}^{\pi} f(x)p_n(x)dx = 0 \text{ for all } n$$

STEP 3: Claim: $\lim_{n\to\infty} \int_{-\pi}^{\pi} f(x) p_n(x) dx = \infty$

This would be our desired contradiction.

Proof of Claim:

$$\int_{-\pi}^{\pi} f(x)p_n(x)dx = \left(\int_{|x|<\delta} + \int_{|x|\ge\delta}\right)f(x)p_n(x)dx$$

Study of the second term: Let $M = \sup_{x} |f(x)|$, then

$$\left| \int_{|x| \ge \delta} f(x) p_n(x) dx \right| \le \int_{|x| \ge \delta} \underbrace{|f(x)|}_{\le M} |p(x)|^n dx \le M \int_{-\pi}^{\pi} \left(1 - \frac{\epsilon}{2} \right)^n dx$$
$$= 2\pi M \underbrace{\left(1 - \frac{\epsilon}{2} \right)^n}_{\to 0}$$

Study of the first term: Notice that p and f are ≥ 0 on $(-\delta, \delta)$ and therefore since $\eta < \delta$ we get

$$\int_{-\delta}^{\delta} f(x)p_n(x)dx \ge \int_{-\eta}^{\eta} f(x)p_n(x)dx \ge \int_{-\eta}^{\eta} \frac{f(0)}{2} \left(1 + \frac{\epsilon}{2}\right)^n dx = 2\eta \frac{f(0)}{2} \underbrace{\left(1 + \frac{\epsilon}{2}\right)^n}_{\to \infty}$$

 \square

Putting both things together we get $\int_{-\pi}^{\pi} f(x) p_n(x) dx \to \infty$

Corollary: If f and g are continuous on $[0, 2\pi]$ and $\hat{f}(n) = \hat{g}(n)$ for all n, then f = g

Consider h = f - g then $\hat{h}(n) = 0$ for all n, so by the previous claim and by continuity of h, we have h = 0 everywhere and hence f = g

3. UNIFORM CONVERGENCE

 $\mathbf{6}$

Using the result above, we can finally give a positive result to our question of convergence. It's sort of a Weierstraß M test for Fourier series:

Theorem: [Uniform Convergence]

If f is a continuous 2π periodic function and moreover

$$\sum_{n=-\infty}^{\infty} \left| \hat{f}(n) \right| < \infty$$

Then the Fourier series converges uniformly to f, that is

r

$$\lim_{N \to \infty} S_N(f)(x) = f(x) \qquad \text{uniformly in } x$$

Proof:³ The Fourier series of f is

$$\sum_{n=-\infty}^{\infty} \hat{f}(n) e^{inx}$$

Since $|\hat{f}(n)e^{inx}| = |\hat{f}(n)| |e^{inx}| = |\hat{f}(n)|$ and $\sum_{n=-\infty}^{\infty} |\hat{f}(n)|$ converges, by the Weierstraß *M*-test, the above series converges uniformly to some function *g*, that is

$$g(x) = \sum_{n = -\infty}^{\infty} \hat{f}(n)e^{inx} = \lim_{N \to \infty} \sum_{n = -N}^{N} \hat{f}(n)e^{inx}$$

Since the uniform limit of continuous functions is continuous, g is continuous on $[0, 2\pi]$

Moreover, if you repeat the formal calculations at the beginning (with c_n), which is now rigorous by uniform convergence, then you get that

 $^{^3\}mathrm{This}$ proof is taken from Corollary 2.3 in Stein and Shakarchi

the Fourier coefficients of g are precisely $\hat{f}(n)$. But by definition $\hat{f}(n)$ are the Fourier coefficients of f. So by uniqueness we have g = f

In other words, the Fourier series of f converges uniformly to $f \checkmark \Box$

The condition on the Fourier coefficients is quite abstract. Luckily there is an easy case where this holds

4. TWICE DIFFERENTIABLE

Theorem: If f is 2π periodic and twice continuously differentiable (f'') is continuous), then there is C > 0 such that for all $n \neq 0$,

$$\left|\hat{f}(n)\right| \le \frac{C}{n^2}$$

Note: Since $\sum_{n \neq 0} \frac{1}{n^2}$ converges, the above implies that if f is twice differentiable, then the Fourier series converges to f uniformly

Proof:⁴

$$\begin{aligned} &2\pi \hat{f}(n) = \int_{-\pi}^{\pi} f(x) e^{-inx} dx = \int_{0}^{2\pi} f(x) e^{-inx} dx \text{ By periodicity} \\ &\stackrel{\text{IBP}}{=} \left[f(x) \frac{-e^{-inx}}{in} \right]_{0}^{2\pi} - \int_{0}^{2\pi} f'(x) \frac{e^{-inx}}{-in} dx \\ &= \frac{1}{in} \int_{0}^{2\pi} f'(x) e^{-inx} dx \\ &= \frac{1}{in} \left[f'(x) \frac{-e^{-inx}}{in} \right]_{0}^{2\pi} + \frac{1}{(in)^{2}} \int_{0}^{2\pi} f''(x) e^{-inx} dx = -\frac{1}{n^{2}} \int_{0}^{2\pi} f''(x) e^{-inx} dx \end{aligned}$$

The terms in brackets vanish since f and f' are periodic.

 $^{^{4}}$ The proof is taken from Corollary 2.4 in the Stein and Shakarchi book

Let $C = \sup_x |f''(x)|$, then

$$2\pi \left| \hat{f}(n) \right| \le \frac{1}{n^2} \int_0^{2\pi} \underbrace{|f''(x)|}_{\le C} \underbrace{|e^{-inx}|}_1 dx = \frac{2\pi C}{n^2}$$

Hence $\left| \hat{f}(n) \right| \leq \frac{C}{n^2}$, as desired.

Remark: The smoother f, the faster the decay. For example, if f is thrice differentiable, then we get $\left|\hat{f}(n)\right| \leq \frac{C}{|n|^3}$ but if f is only once differentiable, then $\left|\hat{f}(n)\right| \leq \frac{C}{|n|}$

Remark: This is only a sufficient condition. One can show that uniform convergence holds even if f is just once differentiable, even though $\sum_{n \neq 0} \frac{1}{|n|}$ diverges.