
LECTURE 7: FOURIER SERIES

Welcome to the magical world of Fourier series! It is an important
sub-field of Analysis with lots of applications to physics and PDE. 1

1. Introduction

Main Goal: Given a 2π periodic function f , write f as a trigono-
metric series, that is in the form

f(x) =
∞∑
n=0

an cos(nx) + bn sin(nx)

Where an and bn are complex numbers (b0 = 0 by convention)

It’s like a power series, except with cos and sin instead of xn

First Observation: Because einx = cos(nx) + i sin(nx) and the an
and bn are arbitrary, we can write this more compactly as

f(x) =
∞∑

n=−∞
cne

inx

Where cn are complex numbers

A formula for cn

Date: Wednesday, July 13, 2022.
1The presentation follows the book Fourier Analysis: An Introduction by Stein and Shakarchi,

and goes a bit deeper than Chapter 8 in Rudin
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Fix m, multiply f by e−imx and formally integrate on [−π, π] to get∫ π

−π
f(x)e−imxdx =

∫ π

−π

( ∞∑
n=−∞

cne
inx

)
e−imxdx =

∞∑
n=−∞

cn

∫ π

−π
ei(n−m)xdx

But if n 6= m we get∫ π

−π
ei(n−m)xdx =

[
ei(n−m)x

i(n−m)

]π
−π

=
1

i(n−m)

(
ei(n−m)π − ei(n−m)(−π)

)
=

1

i(n−m)

(
(((

((((
(((

cos((n−m) π) + i
��

���
���

��:0
sin ((n−m)π)

−
((((

((((
((((

cos((n−m) (−π))− i
���

���
���

���:0
sin ((n−m)(−π))

)
=0

(Here we used the fact that cos is even)

And if n = m then we get∫ π

−π
ei(m−m)xdx =

∫ π

−π
1dx = 2π

So in the end, the sum above just becomes∫ π

−π
f(x)e−imxdx = 2πcm ⇒ cm =

1

2π

∫ π

−π
f(x)e−imxdx

Which gives us an explicit formula for cn

Fact: If f(x) =
∑∞

n=−∞ cne
inx on [−π, π], then (at least formally)

cn =
1

2π

∫ π

−π
f(x)e−inxdx
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This is an an analog of f (n)(0)
n! but for trig series.

Because of this, it makes sense to define

Definition: [n-th Fourier coefficient]

f̂(n) =:
1

2π

∫ π

−π
f(x)e−inxdx

Example: Consider f(x) = x on [−π, π]

Using an integration by parts, you can show that if n 6= 0, then

f̂(n) =
1

2π

∫ π

−π
xe−inxdx =

(−1)n+1

in

and f̂(0) =
1

2π

∫ π

−π
xdx = 0

Therefore the Fourier series of f is

∑
n 6=0

(−1)n+1

in
einx = 2

∞∑
n=1

(−1)n+1

n
sin(nx)

Were we have used that einx−e−inx

2i = sin(nx)

To study Fourier series more rigorously, we need partial sums.

Definition: The N -th partial sum of the Fourier series of f on
(−π, π) is

SN(f)(x) =
N∑

n=−N

f̂(n)einx (Trig Polynomial)
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Main Goal: In what sense does SN(f) converge to f as N →∞?

Remark: Here we mainly focus on the interval [−π, π]. The same
thing works on other intervals. For example, if f is periodic of period
1, then on [0, 1] we get

f(x) =
∞∑

n=−∞
f̂(n)e2πinx

f̂(n) =

∫ 1

0

f(x)e−2πinxdx

Here instead of 1
2π we have 1

1 = 1

2. Uniqueness

Let’s now show that, in some sense, the Fourier series is unique:

Theorem: [Uniqueness]

Let f be a (bounded) integrable 2π periodic function with f̂(n) = 0
for all n. If f is continuous at x0 then f(x0) = 0

(In particular, if f is continuous everywhere, then we get f = 0)

Proof:2 For simplicity, assume x0 = 0 and f is real-valued

STEP 1: By contradiction, suppose f̂(n) = 0 for all n but f(0) 6= 0.
WLOG, f(0) > 0.

2The proof is taken from Theorem 2.1 in Stein and Shakarchi
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Main Idea: Construct a sequence pn of trig polynomials that “peak”
at 0, in the sense that

∫
pn(x)f(x)dx → ∞. This will be a contradic-

tion because, by assumption on f̂(n), those integrals are 0 for all n
(see below)

Since f is continuous at 0, with ε = f(0)
2 there is δ > 0 such that if

|x| < δ then

|f(x)− f(0)| < f(0)

2
⇒ f(x)− f(0) > −f(0)

2
⇒ f(x) >

f(0)

2

STEP 2: Define p(x) = ε+ cos(x), where ε > 0 is so small that

|p(x)| ≤ 1− ε

2
on |x| ≥ δ

(Something like ε = 2
3 (1− cos(δ)) should work, at least around 0)

And choose η > 0 smaller than δ such that

|p(x)| ≥ 1 +
ε

2
on |x| ≤ η

We can do that because p(0) = 1 + ε and p is continuous

Finally define our desired sequence pn as

pn(x) =: (p(x))n = (ε+ cos(x))n

Since pn is a trigonometric polynomial and all the Fourier coefficients
are zero, it follows that∫ π

−π
f(x)pn(x)dx = 0 for all n

STEP 3: Claim: limn→∞
∫ π
−π f(x)pn(x)dx =∞
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This would be our desired contradiction.

Proof of Claim:∫ π

−π
f(x)pn(x)dx =

(∫
|x|<δ

+

∫
|x|≥δ

)
f(x)pn(x)dx

Study of the second term: Let M = supx |f(x)|, then∣∣∣∣∫
|x|≥δ

f(x)pn(x)dx

∣∣∣∣ ≤ ∫
|x|≥δ
|f(x)|︸ ︷︷ ︸
≤M

|p(x)|n dx ≤M

∫ π

−π

(
1− ε

2

)n
dx

= 2πM
(

1− ε

2

)n
︸ ︷︷ ︸

→0

Study of the first term: Notice that p and f are ≥ 0 on (−δ, δ) and
therefore since η < δ we get

∫ δ

−δ
f(x)pn(x)dx ≥

∫ η

−η
f(x)pn(x)dx ≥

∫ η

−η

f(0)

2

(
1 +

ε

2

)n
dx = 2η

f(0)

2

(
1 +

ε

2

)n
︸ ︷︷ ︸
→∞

Putting both things together we get
∫ π
−π f(x)pn(x)dx→∞ �

Corollary: If f and g are continuous on [0, 2π] and f̂(n) = ĝ(n) for
all n, then f = g

Consider h = f − g then ĥ(n) = 0 for all n, so by the previous claim
and by continuity of h, we have h = 0 everywhere and hence f = g �

3. Uniform Convergence
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Using the result above, we can finally give a positive result to our ques-
tion of convergence. It’s sort of a WeierstraßM test for Fourier series:

Theorem: [Uniform Convergence]

If f is a continuous 2π periodic function and moreover

∞∑
n=−∞

∣∣∣f̂(n)
∣∣∣ <∞

Then the Fourier series converges uniformly to f , that is

lim
N→∞

SN(f)(x) = f(x) uniformly in x

Proof:3 The Fourier series of f is

∞∑
n=−∞

f̂(n)einx

Since
∣∣∣f̂(n)einx

∣∣∣ =
∣∣∣f̂(n)

∣∣∣ ∣∣einx∣∣ =
∣∣∣f̂(n)

∣∣∣ and
∑∞

n=−∞

∣∣∣f̂(n)
∣∣∣ converges,

by the WeierstraßM -test, the above series converges uniformly to some
function g, that is

g(x) =
∞∑

n=−∞
f̂(n)einx = lim

N→∞

N∑
n=−N

f̂(n)einx

Since the uniform limit of continuous functions is continuous, g is con-
tinuous on [0, 2π]

Moreover, if you repeat the formal calculations at the beginning (with
cn), which is now rigorous by uniform convergence, then you get that

3This proof is taken from Corollary 2.3 in Stein and Shakarchi
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the Fourier coefficients of g are precisely f̂(n). But by definition f̂(n)
are the Fourier coefficients of f . So by uniqueness we have g = f

In other words, the Fourier series of f converges uniformly to f X �

The condition on the Fourier coefficients is quite abstract. Luckily
there is an easy case where this holds

4. Twice Differentiable

Theorem: If f is 2π periodic and twice continuously differentiable
(f ′′ is continuous), then there is C > 0 such that for all n 6= 0,∣∣∣f̂(n)

∣∣∣ ≤ C

n2

Note: Since
∑

n 6=0
1
n2 converges, the above implies that if f is twice

differentiable, then the Fourier series converges to f uniformly

Proof:4

2πf̂(n) =

∫ π

−π
f(x)e−inxdx =

∫ 2π

0

f(x)e−inxdx By periodicity

IBP
=

[
f(x)
−e−inx

in

]2π
0

−
∫ 2π

0

f ′(x)
e−inx

−in
dx

=
1

in

∫ 2π

0

f ′(x)e−inxdx

=
1

in

[
f ′(x)

−e−inx

in

]2π
0

+
1

(in)2

∫ 2π

0

f ′′(x)e−inxdx = − 1

n2

∫ 2π

0

f ′′(x)e−inxdx

The terms in brackets vanish since f and f ′ are periodic.

4The proof is taken from Corollary 2.4 in the Stein and Shakarchi book
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Let C = supx |f ′′(x)|, then

2π
∣∣∣f̂(n)

∣∣∣ ≤ 1

n2

∫ 2π

0

|f ′′(x)|︸ ︷︷ ︸
≤C

∣∣e−inx∣∣︸ ︷︷ ︸
1

dx =
2πC

n2

Hence
∣∣∣f̂(n)

∣∣∣ ≤ C
n2 , as desired. �

Remark: The smoother f , the faster the decay. For example, if f

is thrice differentiable, then we get
∣∣∣f̂(n)

∣∣∣ ≤ C
|n|3 but if f is only once

differentiable, then
∣∣∣f̂(n)

∣∣∣ ≤ C
|n|

Remark: This is only a sufficient condition. One can show that uni-
form convergence holds even if f is just once differentiable, even though∑

n 6=0
1
|n| diverges.
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