
LECTURE 8: LIMSUP

1. lim sup

Video: What is lim sup?

Welcome to the second most important concept in analysis (after sup):
The lim sup. Because so far we talked about convergent sequences. But
in reality, lots of sequences don’t converge! How do we deal with those?

Consider the following example:

Even though (sn) doesn’t converge, the largest possible limit (limsup)
of (sn) is 1 and the smallest possible limit (liminf) of (sn) is −1.

Date: Thursday, September 23, 2021.
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https://youtu.be/EvTpC5FlirE
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Here lim sup is NOT the same as the sup. In this example, the sup is
4 but the limsup is 1.

Intuitively: The limsup of sn is the sup of sn but for large values of n.

To make this more precise: Given N , define the following helper se-
quence (vN) by:

vN = sup {sn | n > N}

Namely, you look at the largest value of sn, but after the threshold N .
You ignore what’s happening before N .

(vN) actually has some nice properties! For this, let’s plot a couple of
values of vN
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v0 =sup {sn | n > 0} = 4

v1 =sup {sn | n > 1} = 3

v2 =2

v3 =1

v4 =1

v5 =1

Notice that the values of vN seem to stabilize!
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Although things generally don’t always stabilize, what is true is that:

Fact:

(vN) is a decreasing sequence

Why? For example, notice that for v0 = sup {sn | n > 0} you have all
of values of sn to compare. But for vN = sup {sn | n > N} you have
much fewer choices to compare, so the sup cannot be as big as the
original one!

Analogy: Suppose you have a class of 10 students and the highest
score on an exam is 98. If 5 students drop, then the highest score now
isn’t necessarily as big any more, since some of the good students may
have dropped

Since (vN) decreasing and bounded below (if (sn) is), by the Mono-
tone Sequence Theorem, (vN) must exist:



LECTURE 8: LIMSUP 5

Fact:

lim
N→∞

(vN) exists

And it is that limit that we call lim sup:

Definition:

lim sup
n→∞

sn = lim
N→∞

vN = lim
N→∞

sup {sn | n > N}

Interpretation: All this means is that the lim sup is the sup of sn
but for large values of n, so it’s really the largest possible limit of sn

Example:

Find lim supn→∞ sn where sn = (−1)n
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Notice that for every N (not necessarily large),

vN = sup {sn | n > N} = 1

Hence lim sup
n→∞

sn = lim
N→∞

sup {sn | n > N} = lim
N→∞

1 = 1

Why is lim sup SO important? Because even though limn→∞ sn doesn’t
always exist, we have:

Upshot:

lim sup
n→∞

sn ALWAYS exists!

And in Analysis it’s GOOD for things to exist!

Definition:

If (sn) is not bounded above, then

lim sup
n→∞

sn =: ∞

2. lim inf
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Everything that we said for lim sup can be defined analogously with
lim inf. Consider the following sequence:

This time define the helper sequence (uN) by:

uN = inf {sn | n > N}

(You look at the smallest value of sn after N)

This time the opposite scenario happens, namely:

Fact:

(uN) is an increasing sequence
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Why? If N = 0, then we have all the values of sn to compare, so the
inf can be really small. But as N gets bigger, we have fewer and fewer
values to compare, so the inf can’t be that small any more

Analogy: If you have 10 students and the lowest score is 20%. Now
suppose 5 (bad) students dropped. Then the lowest score is now (prob-
ably) higher.

And since (uN) is increasing and bounded above, by the Monotone
Sequence Theorem, (uN) converges, and that limit is called lim inf

Definition:

lim inf
n→∞

sn = lim
N→∞

uN = lim
N→∞

inf {sn | n > N}

Example: (more practice)

Find lim infn→∞ sn where sn = (−1)n
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Notice that for every N (not necessarily large),

uN = inf {sn | n > N} = −1

Hence lim inf
n→∞

sn = lim
N→∞

inf {sn | n > N} = lim
N→∞

−1 = −1

And just as before:

Upshot:

lim inf
n→∞

sn ALWAYS exists!

Definition:

If (sn) is not bounded below, then we define

lim inf
n→∞

sn = −∞

3. lim inf vs lim sup

The good news is that we never have to deal with lim inf explicitly,
because we have the following identity:

Fact:

lim inf
n→∞

sn = − lim sup
n→∞

(−sn)

Why? Recall that for any set S we have:

inf(S) = − sup(−S)

Use the above identity with S = {sn | n > N}, then−S = {−sn | n > N}
and the above identity becomes
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inf {sn | n > N} = − sup {−sn | n > N}

Finally take limN→∞ on both sides:

lim
N→∞

inf {sn | n > N} = lim
N→∞

− sup {−sn | n > N}

lim
N→∞

inf {sn | n > N} =− lim
N→∞

sup {−sn | n > N}

lim inf
n→∞

sn =− lim sup
n→∞

(−sn) □

Next, we’ll discuss two important theorems related to lim sup:

4. lim sup and Convergence

Video: Limsup vs Convergence

The amazing fact is that even if (sn) doesn’t always converge, the lim-
sup always exists. But what if sn converges to s? Then the lim sup
must be equal to s:

Theorem:

If (sn) converges to s, then:

lim sup
n→∞

sn = lim inf
n→∞

sn = s

Proof:

STEP 1: Let ϵ > 0 be given, then there is N such that if n > N , then
|sn − s| < ϵ. But |sn − s| < ϵ ⇒ sn − s < ϵ ⇒ sn < s+ ϵ. But since
this is true for all n > N , we get

sup {sn | n > N} ≤ s+ ϵ ⇒ vN ≤ s+ ϵ

https://youtu.be/ZW8xVHWejaE
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(Remember (vN) was our helper sequence, it’s the sup after N)

!△ Here N is fixed, we cannot change it

But since (vN) is decreasing, and the lim supn→∞ sn is even smaller,
and so

lim sup
n→∞

sn ≤ vN ≤ s+ ϵ ⇒ lim sup
n→∞

sn ≤ s+ ϵ

Since ϵ was arbitrary we get lim supn→∞ sn ≤ s

STEP 2: First of all, notice −sn → −s, so using the result from
STEP 1, we get lim supn→∞−sn ≤ −s. Then, by the identity relating
lim inf and lim sup, we get:

lim inf
n→∞

sn = − lim sup
n→∞

−sn ≥ −(−s) = s

Hence lim infn→∞ sn ≥ s



12 LECTURE 8: LIMSUP

STEP 3: Finally, using STEP 2, lim inf ≤ lim sup, and STEP 1, we
obtain:

s ≤ lim inf
n→∞

sn ≤ lim sup
n→∞

sn ≤ s

Hence lim inf
n→∞

sn = lim inf
n→∞

sn = s □

5. lim sup Squeeze Theorem

Video: lim sup Squeeze Theorem

Not only that, you can use lim inf and lim sup to actually show that a
sequence converges! It’s like a squeeze theorem for lim inf and lim sup:

lim sup Squeeze Theorem:

Suppose
lim inf
n→∞

sn = lim sup
n→∞

sn = s

Then (sn) converges to s

https://youtu.be/rf6vCi28DvY
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Intuitively, this theorem makes sense: lim sup is the largest possible
limit of (sn) and lim inf is the smallest possible limit, so if both of
them agree, this forces (sn) to converge to s, kind of like the squeeze
theorem.

Proof:

STEP 1: Let ϵ > 0 be given.

By assumption, we know lim supn→∞ sn = s, that is:

lim
N→∞

vN = s

Therefore, by definition of the limit, there is N1 such that if N > N1,
then

|vN − s| < ϵ

−ϵ < vN − s < ϵ

vN − s < ϵ

vN < s+ ϵ

sup {sn | n > N} < s+ ϵ

But by definition of a sup, this means that for all n > N we have
sn < s+ ϵ ⇒ sn − s < ϵ.

STEP 2: Similarly, since lim infn→∞ sn = s, there is N2 such that if
N > N2, then

|uN − s| < ϵ

−ϵ < uN − s < ϵ

uN − s > −ϵ

uN > s− ϵ

inf {sn | n > N} > s− ϵ
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But by definition of inf, this means that for all n > N we have
sn > s− ϵ ⇒ sn − s > −ϵ.

STEP 3: Given ϵ > 0, let N = max {N1, N2} as above, then if n > N
both conditions in STEP 1 and STEP 2 hold, so we have sn − s < ϵ
and sn − s > −ϵ, that is |sn − s| < ϵ. ✓

Hence (sn) converges to s □

Note: This theorem implies that if (sn) doesn’t converge, then lim sup >
lim inf, meaning (sn) has positive oscillation.

6. Cauchy Sequences

Video: Cauchy Sequences

https://youtu.be/ltdjB0XG0lc
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Finally, let’s discuss an important topic related to convergence.

Motivation: Consider (sn) = (3, 3.1, 3.14, 3.141, . . . ). Notice that the
terms of sn get closer and closer to each other

It’s precisely this phenomenon that we call a Cauchy sequence:

Definition:

We say (sn) is a Cauchy sequence if for all ϵ > 0 there is N
such that if m,n > N , then

|sn − sm| < ϵ

In other words, in the long run, all the terms of the sequence become
close to each other.
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Important: This is NOT the same as convergence, which says that
for all ϵ > 0 there is N such that if n > N , then |sn − s| < ϵ. There
is a subtle difference here: Convergence means that all the terms are
eventually close to a fixed number s, whereas Cauchy means that all
the terms are eventually close to each other.

Notice that in the definition of Cauchy, there is no mention of the limit
whatsoever. In fact, we’ll see later that not all Cauchy sequences are
convergent. However, what is true is that all convergent sequences are
Cauchy:

Convergence ⇒ Cauchy

If (sn) converges to s, then (sn) is Cauchy

Analogy: If everyone is going to a concert hall (= (sn) converges),
then the concert hall will be crowded (= (sn) is Cauchy).

Proof: Let ϵ > 0 be given.
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Then there is N such that if n > N , then |sn − s| < ϵ
2 .

But this also means that if m > N , then |sm − s| < ϵ
2 as well (we’re

just renaming the variables: If it’s true for n it’s true for m as well)

Therefore, if m and n are > N , then

|sm − sn| = |sm−s+ s− sn| ≤ |sm − s|+|s− sn| = |sm − s|+|sn − s| < ϵ

2
+
ϵ

2
= ϵ✓

Hence (sn) is Cauchy □

What about the converse? Does Cauchy ⇒ Convergence? This is
a very interesting question, and will be answered next time!
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