LECTURE 8: CONVOLUTION

1. Dirichlet Kernel

One quantity of importance in the study of Fourier series is the Dirichlet kernel, defined as follows:

Definition: [Dirichlet Kernel]

$$
D_{N}(x)=\sum_{n=-N}^{N} e^{i n x}
$$

(Think of it as a function with Fourier coefficients 1 and then 0)
The cool thing is that there is actually a closed formula for D_{N}

Fact:

$$
D_{N}(x)=\frac{\sin \left(\left(N+\frac{1}{2}\right) x\right)}{\sin \left(\frac{x}{2}\right)}
$$

Why? Can do it directly, using geometric sums ${ }^{1}$, or consider the following:
$\left(e^{i x}-1\right) D_{N}(x)=e^{i x} D_{N}-D_{N}=\sum_{n=-N}^{N} e^{i(n+1) x}-\sum_{n=-N}^{N} e^{i n x}=e^{i(N+1) x}-e^{-i N x}$
Date: Thursday, July 14, 2022.
${ }^{1}$ See Example 4 in Chapter 2 of Stein and Shakarchi

The last step is because we have a telescoping sum, so the only thing that remains is the last $(N+1)$ term and the first $(-N)$ term.

Multiplying both sides by $e^{\frac{-i x}{2}}$ and dividing by $2 i$ we get

$$
\frac{e^{\frac{i x}{2}}-e^{-\frac{i x}{2}}}{2 i} D_{N}(x)=\frac{e^{i\left(N+\frac{1}{2}\right) x}-e^{-i\left(N+\frac{1}{2}\right) x}}{2 i}
$$

And since $\sin (x)=\frac{e^{i x}-e^{-i x}}{2 i}$ we get

$$
\sin \left(\frac{x}{2}\right) D_{N}(x)=\sin \left(\left(N+\frac{1}{2}\right) x\right)
$$

2. Relation to Fourier Series

Recall:

$$
\begin{gathered}
\hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x \text { Fourier coefficient } \\
S_{N}(f)(x)=\sum_{n=-N}^{N} \hat{f}(n) e^{i n x} \text { Partial Sums }
\end{gathered}
$$

It turns out that we can conveniently write $S_{N}(f)$ in terms of D_{N}

Important Observation:

$$
\begin{aligned}
S_{N}(f)(x) & =\sum_{n=-N}^{N} \hat{f}(n) e^{i n x} \\
& =\sum_{n=-N}^{N}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) e^{-i n y} d y\right) e^{i n x} \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y)\left(\sum_{n=-N}^{N} e^{i n(x-y)}\right) d y \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) D_{N}(x-y) d y
\end{aligned}
$$

We have therefore shown that:

Fact:

$$
S_{N}(f)(x)=\left(f \star D_{N}\right)(x)
$$

Where \star is an operation called convolution that we'll talk about below.

In other words, the problem of understanding $S_{N}(f)$ reduces to the understanding of the convolution $f \star D_{N}$. Here is a great illustration of this fact:

3. Pointwise Convergence

Let's show that if f is (sort of) Lipschitz, then the Fourier series of f converges to f pointwise.

Definition: f is Lipschitz at x there is $L>0$ such that for all y,

$$
|f(y)-f(x)| \leq L|y-x|
$$

Here L can depend on x.
Theorem [Pointwise Convergence]
Suppose f is Lipschitz at x, then

$$
\lim _{N \rightarrow \infty} S_{N}(f)(x)=f(x)
$$

Note: A similar proof works if f is differentiable at x, see Stein and Shakarchi Theorem 2.1.

Corollary: If f is Lipschitz or f is differentiable, then the Fourier series converges pointwise everywhere.

Proof: ${ }^{2}$

STEP 1: Notice from the def of $D_{N}=\sum_{n} e^{i n x}$ that $\int_{-\pi}^{\pi} D_{N}(y)=2 \pi$ and therefore:

$$
\begin{aligned}
S_{N}(f)(x)-f(x) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x-y) D_{N}(y) d y-f(x) \frac{1}{2 \pi} \underbrace{\int_{-\pi}^{\pi} D_{N}(y) d y}_{2 \pi} \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}(f(x-y)-f(x)) D_{N}(y) d y \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}(f(x-y)-f(x))\left(\frac{\sin \left(\left(N+\frac{1}{2}\right) y\right)}{\sin \left(\frac{y}{2}\right)}\right) d y
\end{aligned}
$$

In the last step we used the explicit formula for D_{N} above.

[^0]STEP 2: Using that

$$
\sin \left(\left(N+\frac{1}{2}\right) y\right)=\sin (N y) \cos \left(\frac{y}{2}\right)+\cos (N y) \sin \left(\frac{y}{2}\right)
$$

The above becomes

$$
\begin{aligned}
S_{N}(f)(x)-f(x) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}(f(x-y)-f(x))\left(\frac{\cos \left(\frac{y}{2}\right)}{\sin \left(\frac{y}{2}\right)}\right) \sin (N y) d y \\
& +\frac{1}{2 \pi} \int_{-\pi}^{\pi}(f(x-y)-f(x)) \cos (N y) d y
\end{aligned}
$$

Upshot: Notice that those two integrals kind of look like Fourier coefficients!

STEP 3: To conclude the proof, we will need a result that we'll prove next time:

Fact: If g is bounded and integrable on $[-\pi, \pi]$, then

$$
\lim _{N \rightarrow \infty} \int_{-\pi}^{\pi} g(y) \cos (N y) d y=0 \text { and } \lim _{N \rightarrow \infty} \int_{-\pi}^{\pi} g(y) \sin (N y)=0
$$

Our proof then follows, once we show that the functions are bounded and integrable.

For the second term, boundedness follows from the Lipschitz condition:

$$
|f(x-y)-f(x)| \leq L|y| \rightarrow \text { bounded on }[-\pi, \pi]
$$

And by continuity of f, the function above is integrable on $[-\pi, \pi]$.

$$
\left|(f(x-y)-f(x)) \cot \left(\frac{y}{2}\right)\right| \leq L|y|\left|\cot \left(\frac{y}{2}\right)\right| \rightarrow \text { bounded on }[-\pi, \pi]
$$

For boundedness, the only point of concern is near $y=0$. But it is not a problem since $\lim _{y \rightarrow 0} y \cot \left(\frac{y}{2}\right)=2$ (by L'Hôpital), and integrability follows from this and continuity of the functions.

Putting everything together, we get

$$
\lim _{N \rightarrow \infty} S_{N} f(x)-f(x)=0
$$

4. Convolution

As mentioned above, $S_{N}(f)$ is the convolution of f and D_{N}. Let's study this notion of convolution in more detail:

Definition: If f and g are two integrable 2π periodic functions, then

$$
(f \star g)(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) g(x-y) d y=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x-y) g(y) d y
$$

Mnemonic: The sum is always x, namely $y+(x-y)=x-y+y=x$
Note: The two definitions are equivalent because if you let $u=x-y$ in the first integral, then $d u=-d y$ and $y=x-u$ and therefore (ignoring the 2π for clarity)

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(y) g(x-y) d y=\int_{x+\pi}^{x-\pi} f(x-u) g(u)(-d u) & =\int_{x-\pi}^{x+\pi} f(x-u) g(u) d u \\
& =\int_{-\pi}^{\pi} f(x-u) g(u) d u
\end{aligned}
$$

The last step follows from periodicity.

Immediate Properties:

(1) $f \star(g+h)=f \star g+f \star h$
(2) $(c f) \star g=c(f \star g)=f \star(c g)$
(3) $f \star g=g \star f$
(4) $(f \star g) \star h=f \star(g \star h)$

Fact: If f and g are continuous, then $f \star g$ is continuous
Proof: ${ }^{3}$ Since g is continuous on $[-\pi, \pi]$, it is uniformly continuous on $[-\pi, \pi]$.

Let $M=\sup _{x}|f(x)|$
Let $\epsilon>0$ be given. Then there is $\delta>0$ such that if $|x-y|<\delta$ then $|g(x)-g(y)|<\epsilon$.

With the same δ, if $\left|x_{1}-x_{2}\right|<\delta$, then (again ignoring the 2π)

$$
\begin{aligned}
\left|(f \star g)\left(x_{1}\right)-(f \star g)\left(x_{2}\right)\right| & =\left|\int_{-\pi}^{\pi} f(y) g\left(x_{1}-y\right) d y-\int_{-\pi}^{\pi} f(y) g\left(x_{2}-y\right) d y\right| \\
& \leq\left|\int_{-\pi}^{\pi} f(y)\left(g\left(x_{1}-y\right)-g\left(x_{2}-y\right)\right) d y\right| \\
& \leq \int_{-\pi}^{\pi} \underbrace{|f(y)|}_{M} \underbrace{\left|g\left(x_{1}-y\right)-g\left(x_{2}-y\right)\right|}_{\epsilon} d y \\
& \leq 2 \pi \epsilon M \checkmark
\end{aligned}
$$

Notice: In the proof above, we never used continuity of f, just that f is bounded. In fact this is always true, $f \star g$ is always at least regular (continuour or smooth) as the more regular one of f and g. For

[^1]example:
Fact: If f is continuous and g is differentiable, then $f \star g$ is differentiable and
$$
(f \star g)^{\prime}=f \star\left(g^{\prime}\right)
$$

Informally, this follows because

$$
(f \star g)^{\prime}(x)=\left(\int_{-\pi}^{\pi} f(y) g(x-y) d y\right)^{\prime}=\int_{-\pi}^{\pi} f(y) g^{\prime}(x-y) d y=f \star\left(g^{\prime}\right)
$$

The differentiation is justified by taking difference quotients and using the Dominated Convergence Theorem (see Chapter 11)

How are convolutions related to Fourier series? Because of the following fact:

Fact: If f and g are continuous, then

$$
\widehat{f \star g}(n)=\hat{f}(n) \hat{g}(n)
$$

So the Fourier coefficient of $f \star g$ is the product of the Fourier coefficients of f and g, this is what makes convolution so nice!

Proof: Again, ignore the factor of 2π in the fourier coefficients and in the convolution

$$
\begin{aligned}
& \widehat{f \star g}(n)=\int_{-\pi}^{\pi}(f \star g)(x) e^{-i n x} d x \\
&=\int_{-\pi}^{\pi}\left(\int_{-\pi}^{\pi} f(y) g(x-y) d y\right) e^{-i n x} d x \\
& \stackrel{\text { FUBINI }}{=} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(y) g(x-y) e^{-i n x} d x d y \\
&=\int_{-\pi}^{\pi} f(y) \int_{-\pi}^{\pi} g(x-y) e^{-i n(x-y)} e^{-i n y} d x d y \\
&=\int_{-\pi}^{\pi} f(y) e^{-i n y}\left(\int_{-\pi}^{\pi} g(x-y) e^{-i n(x-y)} d x\right) d y \\
&=\int_{-\pi}^{\pi} f(y) e^{-i n y}\left(\int_{-\pi}^{\pi} g(u) e^{-i n u} d u\right) d y \quad(\text { Use } u=x-y) \\
&=\left(\int_{-\pi}^{\pi} f(y) e^{-i n y} d y\right)\left(\int_{-\pi}^{\pi} g(u) e^{-i n u} d u\right) \\
&=\hat{f}(n) \hat{g}(n)
\end{aligned}
$$

(The same result is true if f and g are just integrable, but we would need an approximation theorem for that)

5. Optional: Convolution Intuition

Video: Convolution Intuition
Intuitively, $f \star g$ is the "multiplication" of f and g. This makes sense at least in terms of Fourier coefficients (see above).

Here is another way to think of it in terms of multiplication.

Question: What is the coefficient $h(2)$ of x^{2} in

$$
\left(a_{0}+a_{1} x+a_{2} x^{2}\right)\left(b_{0}+b_{1} x+b_{2} x^{2}\right) ?
$$

Multiplying out, the coefficient of x^{2} becomes

$$
h(2)=a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}=\sum_{k=0}^{2} a_{k} b_{2-k}
$$

Compare this with

$$
(f \star g)(x)=\int_{-\pi}^{\pi} f(y) g(x-y) d y "=" \sum f(y) g(x-y)
$$

Which is also a sum of terms of the form $a_{k} b_{x-k}$
So in some sense $(f \star g)(x)$ is the x-th coefficient of f times g, if you think of f and g as polynomials.

In this sense, convolution becomes sort of like multiplication of f and g.

[^0]: ${ }^{2}$ The proof is adapted from Theorem 8.14 in Rudin

[^1]: ${ }^{3}$ The proof is taken from Prop 3.1 in Chapter 2 of Stein and Shakarchi

