
LECTURE 9: CAUCHY SEQUENCES; SUBSEQUENCES

1. Cauchy Sequences

Video: Cauchy Sequences

Last time: Discussed the notion of a Cauchy sequence, which are just
sequences that are getting close to each other (instead of closer to s).

Definition:

(sn) is a Cauchy sequence if for all ϵ > 0 there is N such that
if m,n > N , then

|sn − sm| < ϵ

Date: Tuesday, September 28, 2021.
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https://youtu.be/ltdjB0XG0lc
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Just like for convergent sequences, Cauchy sequences are bounded.

Cauchy sequences are bounded

If (sn) is Cauchy, then (sn) is bounded

Proof: Let ϵ > 0 be arbitrary, then there is (an integer) N such that
if m,n > N , then |sm − sn| < ϵ

But in particular with m = N + 1 > N , we get that if n > N , then
|sN+1 − sn| < ϵ. So if n > N , we have:

|sn| = |sn − sN+1 + sN+1| ≤ |sn − sN+1|+ |sN+1| < ϵ+ |sN+1|︸ ︷︷ ︸
FIXED

Now let M = max {|s1| , |s2| , . . . , |sN | , ϵ+ |sN+1|} > 0

Case 1: If n ≤ N , then:

|sn| ≤ max {|s1| , |s2| , . . . , |sN |} ≤ M✓

Case 2: If n > N , then
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|sn| ≤ ϵ+ |sN+1| ≤ M✓

So in either case, for all n, |sn| ≤ M , so (sn) is bounded □

2. Completeness

Video: Completeness

Last time: We’ve seen that if (sn) is convergent, then it is Cauchy.

But what about the converse: If (sn) is Cauchy, then is it convergent?

Analogy: Just because you see a large crowd (Cauchy), it doesn’t
mean that the crowd is going somewhere

Example: Pretend our universe is Q and you don’t know that real
numbers exist. Now look at the following sequence:

(sn) = (3, 3.1, 3.14, 3.141, 3.1415, . . . )

https://youtu.be/n-tWaJcUeR4
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This sequence is Cauchy, since all the terms are getting closer to each
other. But does (sn) converge (in Q)? NO! Because if (sn) converges,
then it must converge to π, which is not in Q. So in our universe, the
limit does not exist.

But in R, the answer is YES: Cauchy sequences in R are convergent,
which explains yet again why real numbers are so great.

R is complete

If (sn) is a Cauchy sequence in R, then (sn) converges

Proof: Since we don’t know what the limit is, let’s use the lim sup
squeeze theorem from last time. Namely, let’s show that:

lim sup
n→∞

sn = lim inf
n→∞

sn

STEP 1: Let ϵ > 0 be arbitrary
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Since (sn) is Cauchy, there is N such that if m,n > N , then:

|sn − sm| < ϵ ⇒ sn − sm < ϵ ⇒ sn < sm + ϵ

Since this is true for all n > N , taking the sup over n, we get:

vN =: sup {sn | n > N} ≤ sm + ϵ

But from last time, since vN is decreasing with limit lim supn→∞ sn, so
for all n > N ,

lim sup
n→∞

sn ≤ vN ≤ sm + ϵ ⇒ lim sup
n→∞

sn ≤ sm + ϵ

Therefore sm ≥
(
lim sup
n→∞

sn

)
− ϵ

STEP 2: Since this is true for all m > N , taking the inf over m, we
get:

uN =: inf {sm | m > N} ≥
(
lim sup
n→∞

sn

)
− ϵ
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Since uN is increasing in N with limit lim infn→∞ sn, we get for all
m > N :

lim inf
n→∞

sn ≥ uN ≥
(
lim sup
n→∞

sn

)
− ϵ ⇒ lim inf

n→∞
sn ≥

(
lim sup
n→∞

sn

)
− ϵ

And since ϵ was arbitrary, we obtain

lim inf
n→∞

sn ≥ lim sup
n→∞

sn

But since also lim infn→∞ sn ≤ lim supn→∞ sn, we get lim infn→∞ sn =
lim supn→∞ sn Therefore, by the limsup squeeze theorem, (sn) must
converge to some s. □

Definition:

A space is complete if every Cauchy sequence in it converges

Examples: R (just shown), but also Rn and Z (see HW)

Non-Example: Q

Intuitively: A complete space doesn’t have holes, just like R doesn’t
have holes, but R does.

Fun Fact 1:

Can always complete an incomplete space, like completing Q to
get R
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Fun Fact 2:

It is possible to construct R just by using Cauchy sequences of
rational numbers! So a real number is just a (class of) sequences
of rational numbers, just like a rational number is just a (class
of) pairs of integers

3. Subsequences

Video: What is a Subsequence?

Suppose we have a sequence (sn). Think of (sn) as a train that goes
through cities (such as Peyamgeles, Liouville, Sup Francisco, or Inf-
ianapolis).

Then a subsequence (snk
) is an express train, that which goes through

the same cities as (sn), but skips some cities.

In the picture above, sn1
(the first express stop) is the second city, sn2

is the 3rd city, sn3
is the 5th city, and sn4

is the 8th city.

https://youtu.be/X6lzVtxIBOo
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Definition:

A subsequence of (sn) is a sequence of the form (snk
) with n1 <

n2 < . . . , where for every k, you associate a value snk
of (sn)

So every express stop snk
has to be one of the original stops of (sn),

but snk
can skip some of the cities; And the condition n1 < n2 < . . .

says that the second stop sn2
comes after the first stop sn1

, and so on.
In other words, the express train is going forwards, not backwards

Example 1:

Let (sn) be the sequence:

sn = (−1)nn2 = (−1, 4,−9, 16,−25, . . . )

Define the subsequence (snk
) by snk

= kth positive term of (sn)

That is, just look at the positive terms of (sn) and skip the negative
ones. Or, in other words, just look at every second term of sn
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sn1
=s2 = 4

sn2
=s4 = 16

sn3
=s6 = 36

And, following that pattern, you might guess that:

snk
= s2k = (2k)2 = 4k2

Remark: We can express this as a composition of two functions: if
you define σ(k) = 2k, then we have:

snk
= s2k = sσ(k)

So σ(k) takes k as an input and gives us n = 2k, and our sequence sn
takes n = 2k as an input and spits out s2k.
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Example 2:

Let (sn) be the sequence:

sn = sin
(πn

2

)
= (1, 0,−1, 0, 1, 0,−1, 0, · · · )

One example of a subsequence is

(snk
) = (1,−1, 0, 0, 0, . . . )

Notice that, even though the original sequence (sn) doesn’t converge,
the subsequence (snk

) converges! And in fact we’ll see next time that
any (bounded) sequence will always have a convergent subsequence!

But, if (sn) converges to s, then any subsequence must also converge
to s. This makes sense: If a train leads you to a final destination, then
any express train must also go to that final destination.

Convergence Fact:

If limn→∞ sn = s, then limk→∞ snk
= s as well.
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Note: The proof of this relies on the following little fact:1

Little Fact:

For all k, nk ≥ k

In other words, the k-th express stop must be after the k-th non-express
stop. Otherwise, why would it be called an express train?

Proof of Convergence Fact:

Let ϵ > 0 be given, since (sn) converges to s, there is N such that for
all n > N , then |sn − s| < ϵ

Now for the same N , if k > N , then nk ≥ k > N , so k > N and
therefore |snk

− s| < ϵ, so snk
converges to s □

1The proof is by induction: The inductive step is nk+1 > nk ≥ k, so nk+1 > k and therefore
nk+1 ≥ k + 1 since k is an integer. For example, if nk+1 > 6 then nk+1 ≥ 7



12 LECTURE 9: CAUCHY SEQUENCES; SUBSEQUENCES

4. Inductive Construction 1

Video: Inductive Construction 1

Now that we got the basics down, let’s cover an important technique
called an inductive construction (of subsequence). This technique will
be used over and over again in this course.

Note: Here I give a somewhat simplified presentation of the book and
the video.

Example 3:

If a ∈ R, show that there is an increasing sequence (rn) of rational
numbers that converges to a

https://youtu.be/1OXTu7QRZqI
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Note: Although the fact itself is very neat, it’s really the technique of
the proof that’s important here!

Proof: Our goal is to construct an increasing sequence (rn) with the
property that for every n ∈ N

a− 1

n
< rn < a

Idea: First construct r1 and, given rn, construct rn+1

STEP 1: Base Case:

Construct r1: Since Q is dense in R, there is a rational number r1 with
a− 1 < r1 < a ✓

STEP 2: Inductive step:

Suppose you found r1 < r2 < · · · < rn such that a− 1
k < rk < a for all

k = 1, . . . , n

Goal: Find rn+1 with rn+1 > rn and a−
(

1
n+1

)
< rn+1 < a

Note: It is not quite enough to repeat the density argument above,
since this doesn’t guarantee that rn+1 > rn

To get around this, let M = max
{
rn, a− 1

n+1

}
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Then since Q is dense in R there is rn+1 such that M < rn+1 < a, so
in particular, since M is the max, rn+1 > rn ✓and a− 1

n+1 < rn+1 < a.

STEP 3: Therefore, by this inductive construction, we have found an
increasing sequence (rn) such that a − 1

n < rn < a, and lastly, by the
squeeze theorem, we get limn→∞ rn = a □
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