LECTURE 9: FUNCTIONS OF SEVERAL VARIABLES

Welcome to the heart of multi-variable calculus, because today we'll cover functions of several variables.

1. The basics

So far our functions depended only on one variable, like $f(x)=x^{2}$, but from now on our functions will have two or more variables:

1.1. Examples:

Example 1:

Let $f(x, y)=2 x^{2}+3 x y+y^{2}$
Find $f(1,2)$ and $f(-1,0)$
For $f(1,2)$, we have $x=1$ and $y=2$ and so

$$
\begin{gathered}
f(1,2)=2(1)^{2}+3(1)(2)+(2)^{2}=2+6+4=12 \\
f(-1,0)=2(-1)^{2}+3(-1)(0)+(0)^{2}=2
\end{gathered}
$$

This is very useful in applications, because real life phenomena depend on many variables; think functions of Position and Time, or Temperature and Pressure.
1.2. Domains: The nice thing is that a lot of concepts from calculus, such as domain, range, and graphs, generalize easily to higher dimensions:

Example 2:

Sketch the domains of the following functions:
(a) $f(x, y)=\ln \left(4-x^{2}-y^{2}\right)$
(b) $f(x, y)=\sqrt{1-|x|-|y|}$

Definition:

The domain of a function f is the set of numbers (x, y) for which $f(x, y)$ is defined
(Just like in 1 dimension where the domain of $f(x)=\sqrt{x}$ is $[0, \infty)$)
(a) Since $\ln (x)$ is only defined for positive x, the the domain of $\ln \left(4-x^{2}-y^{2}\right)$ is

$$
4-x^{2}-y^{2}>0 \Rightarrow x^{2}+y^{2}<4
$$

Which is the inside of the disk centered at $(0,0)$ and radius 2 (without the boundary)

Careful Note: In 1 dimensions, the domain is an interval like $[0, \infty)$, but in 2 dimensions, the domain is a 2 D region.
(b) $f(x, y)=\sqrt{1-|x|-|y|}$

Since you cannot take square roots of negative numbers, here we need:

$$
\begin{aligned}
& 1-|x|-|y| \geq 0 \\
\Rightarrow & |x|+|y| \leq 1 \\
\Rightarrow & |y| \leq 1-|x| \\
\Rightarrow & -(1-|x|) \leq y \leq 1-|x| \\
\Rightarrow & |x|-1 \leq y \leq 1-|x|
\end{aligned}
$$

(Here we used that $|A| \leq B \Leftrightarrow-B \leq A \leq B$)

So here the domain is a square with vertices $(1,0),(0,1),(-1,0),(0,-1)$
1.3. Graphs: Similarly, functions in several variables have graphs. The only difference is that in one dimension, graphs are curves, but in 2 dimensions, graphs are surfaces:

Example 3:

Sketch the graph of $f(x, y)=\sqrt{9-x^{2}-y^{2}}$
This is actually an object that we've seen before! Notice that

$$
z=\sqrt{9-x^{2}-y^{2}} \Rightarrow z^{2}=9-x^{2}-y^{2} \Rightarrow x^{2}+y^{2}+z^{2}=9
$$

The graph is not quite a sphere; because $z=\sqrt{9-x^{2}-y^{2}} \geq 0$, the graph is actually an upper hemisphere centered at $(0,0,0)$ and radius 3 .

1.4. Range: Related to domains is the concept of range. which is the set of all possible values of the function.

Example 4:

Find the range of $f(x, y)=\sqrt{9-x^{2}-y^{2}}$

Definition:

The range of a function f is the set of all possible values of $z=f(x, y)$

Based on the graph above, notice that $z=\sqrt{9-x^{2}-y^{2}}$ goes from 0 to 3 , so the range is $[0,3]$

Note: Here the range is in fact an interval, just like in 1 dimensions.
1.5. Limits: (optional). Finally, we can even take limits of functions, just like in 1 dimensions.

Example 5:

Find the following limit:

$$
\lim _{(x, y) \rightarrow(1,2)} \frac{2 x+4 y}{x^{2}+y^{2}}
$$

$$
\lim _{(x, y) \rightarrow(1,2)} \frac{2 x+4 y}{x^{2}+y^{2}}=\frac{2(1)+4(2)}{1^{2}+2^{2}}=\frac{10}{5}=2
$$

Interpretation:

As (x, y) goes to $(1,2), f(x, y)=\frac{2 x+4 y}{x^{2}+y^{2}}$ gets closer and closer to 2
Note: Using this, we can define f is continuous, which intuitively means that the graph of f has no jumps (see section 14.2 if interested)

2. Level Curves

More importantly, we can talk about level curves, which is a useful tool for graphing functions in 3D and even 4D.

Example 6: (Motivation)

Consider the function $f(x, y)$ with the following graph:

Then we can look at all the points that are at a given height, for example all the points that are at height 10 or 15 .

Then the curves that we get are called level curves and the picture that we get is called a contour map.

Definition:

Level Curves are curves of the form $z=$ Some Number

Note: Think of the level curves like slicing the graph horizontally, and the contour map like a birds-eye view of the graph.

Application: Level curves such as the one below are used in maps to draw a 2D representation of a mountain.

Example 7:

Let $f(x, y)=\sqrt{9-x^{2}-y^{2}}$
Sketch the level curves $z=0, z=1, z=2, z=3$

So the level curves $z=0,1,2,3$ are circles centered at $(0,0)$ and radii $3, \sqrt{8}, \sqrt{5}$, and 0 (point) respectively.

What's great about level curves is that they give us a 2D representation of a 3D figure, which is especially important in higher dimensions (see below).

Not only that, we can use level curves to sketch surfaces.
Example 8: (extra practice)
Use level curves to sketch the surface $x^{2}+y^{2}=z^{2}$

Unlike the previous example, z can also be negative, so let's also sketch some negative level curves (think oceans)

$$
\begin{aligned}
\mathbf{z}=\mathbf{3} & \Rightarrow x^{2}+y^{2}=3^{2} \\
\mathbf{z}=\mathbf{2} & \Rightarrow x^{2}+y^{2}=2^{2} \\
\mathbf{z}=\mathbf{1} & \Rightarrow x^{2}+y^{2}=1^{2} \\
\mathbf{z}=\mathbf{0} & \Rightarrow x^{2}+y^{2}=0^{2} \Rightarrow(0,0) \\
\mathbf{z}=-\mathbf{1} & \Rightarrow x^{2}+y^{2}=(-1)^{2} \Rightarrow x^{2}+y^{2}=1 \\
\mathbf{z}=-\mathbf{2} & \Rightarrow x^{2}+y^{2}=(-2)^{2} \Rightarrow x^{2}+y^{2}=4 \\
\mathbf{z}=-\mathbf{3} & \Rightarrow x^{2}+y^{2}=(-3)^{2} \Rightarrow x^{2}+y^{2}=9
\end{aligned}
$$

So here the level curves $z=3,2,1,0,-1,-2,-3$ are circles centered at $(0,0)$ and radius $3,2,1,0,1,2,3$ respectively.

Therefore, connecting the level curves, we see that the surface $z^{2}=$ $x^{2}+y^{2}$ is a cone:

3. Level Surfaces

What about functions of 3 variables, of the form $f(x, y, z)$? The beautiful thing is that everything that we learned about 2 variables generalizes to 3 variables as well, except that now level curves become level surfaces.

Example 9:

Let $w=f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ (hypercone)
Sketch the level surfaces $w=0, w=1, w=2, w=3$

Definition:

A level surface is a surface of the form $w=$ Some number

$$
\begin{aligned}
& \mathbf{w}=\mathbf{0} \Rightarrow \sqrt{x^{2}+y^{2}+z^{2}}=0 \Rightarrow x^{2}+y^{2}+z^{2}=0 \Rightarrow(0,0,0) \\
& \mathbf{w}=\mathbf{1} \Rightarrow \sqrt{x^{2}+y^{2}+z^{2}}=1 \Rightarrow x^{2}+y^{2}+z^{2}=1 \\
& \mathbf{w}=\mathbf{2} \Rightarrow \sqrt{x^{2}+y^{2}+z^{2}}=2 \Rightarrow x^{2}+y^{2}+z^{2}=4 \\
& \mathbf{z}=\mathbf{3} \Rightarrow \sqrt{x^{2}+y^{2}+z^{2}}=3 \Rightarrow x^{2}+y^{2}+z^{2}=9
\end{aligned}
$$

So the level surfaces $w=0,1,2,3$ are spheres centered at $(0,0,0)$ and radii $0,1,2,3$ respectively.

Why important: We cannot draw the surface $w=\sqrt{x^{2}+y^{2}+z^{2}}$ because it's in 4 dimensions, but this process allows us to visualize it. The level surfaces tell us that this is a (hyper)cone whose slices are spheres, just like for the regular cone where the slices are circles. In some sense, this gives us a glimpse in the 4th dimension!

Note: For the hypersphere $x^{2}+y^{2}+z^{2}+w^{2}=r^{2}$, it's even freakier! It's a sphere (in 4 dimensions) whose level surfaces are spheres (in 3 dimensions). So it's like cutting an orange whose slices are oranges!

Similarly a 5 -dimensional sphere is an orange whose slices are (4dimensional) oranges, wow!

Example 10: (extra practice)

Let $w=f(x, y, z)=x^{2}+y^{2}-z^{2}$
Sketch the level surfaces $w=-1, w=0, w=1$

$$
\begin{aligned}
\mathbf{w}=-\mathbf{1} & \Rightarrow x^{2}+y^{2}-z^{2}=-1 \Rightarrow-x^{2}-y^{2}+z^{2}=1 \text { (Two cups) } \\
\mathbf{w}=\mathbf{0} & \Rightarrow x^{2}+y^{2}-z^{2}=0 \Rightarrow z^{2}=x^{2}+y^{2}(\text { Cone }) \\
\mathbf{w}=\mathbf{1} & \Rightarrow x^{2}+y^{2}-z^{2}=1 \text { (Dress) }
\end{aligned}
$$

So it's a weird surface in 4 dimensions whose positive slices are two cups, the zero-slice is a cone, and negative slices are dresses. What in the world is this???

