LECTURE 9: ORTHOGONALITY

We can get very powerful properties of Fourier series if we examine them under a more abstract viewpoint.

1. Orthogonality

Consider the space of 2π periodic integrable functions, which we can now equip with an inner product:

Definition:

$$
(f, g)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x
$$

It's a function analog of the dot product for complex numbers

$$
\left(x_{1}, x_{2}, \cdots, x_{n}\right) \cdot\left(y_{1}, y_{2}, \cdots, y_{n}\right)=\sum_{k=1}^{n} x_{k} \overline{y_{k}}
$$

(since an integral is just a big sum)
We can then define the length of a function as

$$
\|f\|^{2}=(f, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{2} d x
$$

Notation: $e_{n}(x)=e^{i n x}$
What makes the e_{n} so special is that

Fact: The family $\left\{e_{n}\right\}_{n=-\infty}^{\infty}$ is orthonormal, that is

$$
\left(e_{n}, e_{m}\right)= \begin{cases}1 & \text { if } n=m \\ 0 & \text { if } n \neq m\end{cases}
$$

Why?
$\left(e_{n}, e_{m}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i n x} \overline{e^{i m x}} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i n x} e^{-i m x} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(n-m) x} d x$
If $n \neq m$, this integral is 0 (see the first lecture on Fourier series), and if $n=m$ this integral is 1

We will see today that orthogonality lies in the heart of a lot of powerful results about Fourier series.

Notation:

$$
a_{n}=: \hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x=\left(f, e_{n}\right)
$$

And in particular, we get

$$
\left.S_{N}(f)=\sum_{n=-N}^{N} a_{n} e_{n} \quad \text { (linear combo of } e_{n}\right)
$$

And Fourier analysis is the study of

$$
f-S_{N}(f)=f-\sum_{n=-N}^{N} a_{n} e_{n}
$$

2. Orthogonal Decomposition

Geometrically, $S_{N}(f)$ is just the orthogonal projection of f on the span of $\left\{e_{n}\right\}_{n=-N}^{N}$ (see picture in lecture), and in fact:

Fact: For any complex numbers b_{n},

$$
\left(f-S_{N}(f)\right) \perp \sum_{n=-N}^{N} b_{n} e_{n}
$$

Fix m and calculate

$$
\begin{aligned}
\left(f-S_{N}(f), e_{m}\right) & =\left(\left(f-\sum_{n=-N}^{N} a_{n} e_{n}\right), e_{m}\right)=\underbrace{\left(f, e_{m}\right)}_{a_{m}}-\sum_{n=-N}^{N} a_{n} \underbrace{\left(e_{n}, e_{m}\right)}_{0 \text { or } 1} \\
& =a_{m}-a_{m}=0
\end{aligned}
$$

And the result follows by taking linear combinations of the e_{m}
Recall: [Pythagorean Theorem]

$$
\text { If } u \perp v \text { then }\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}
$$

Theorem: [Orthogonal Decomposition]

$$
\|f\|^{2}=\left\|f-S_{N}(f)\right\|^{2}+\sum_{n=-N}^{N}\left|a_{n}\right|^{2}
$$

Might not look like much, but we'll see soon why this is so useful.

Proof:

$$
f=\left(f-S_{N}(f)\right)+S_{N}(f)=\left(f-S_{N}(f)\right)+\sum_{n=-N}^{N} a_{n} e_{n}
$$

And using the fact above and the Pythagorean Theorem, we get

$$
\|f\|^{2}=\left\|f-S_{N}(f)\right\|^{2}+\left\|\sum_{n=-N}^{N} a_{n} e_{n}\right\|^{2}
$$

And since the e_{n} are orthonormal, applying the Pythagorean theorem many times to the second term, we get

$$
\left\|\sum_{n=-N}^{N} a_{n} e_{n}\right\|^{2}=\sum_{n=-N}^{N}\left\|a_{n} e_{n}\right\|^{2}=\sum_{n=-N}^{N}\left|a_{n}\right|^{2} \underbrace{\left\|e_{n}\right\|^{2}}_{1}=\sum_{n=-N}^{N}\left|a_{n}\right|^{2}
$$

Which gives the desired result above
Corollary: [Bessel's Inequality]

$$
\sum_{n=-\infty}^{\infty}\left|a_{n}\right|^{2} \leq\|f\|^{2}
$$

Proof:

$$
\|f\|^{2}=\underbrace{\left\|f-S_{N}(f)\right\|^{2}}_{\geq 0}+\sum_{n=-N}^{N}\left|a_{n}\right|^{2} \geq \sum_{n=-N}^{N}\left|a_{n}\right|^{2}
$$

Hence for all N, we have

$$
\sum_{n=-N}^{N}\left|a_{n}\right|^{2} \leq\|f\|^{2}
$$

And taking the limit as N goes to ∞ gives the result
Corollary: [Riemann Lebesgue Lemma]
If f is 2π periodic and integrable, then $\lim _{n \rightarrow \pm \infty} \hat{f}(n)=0$

That is, the Fourier coefficients of an integrable function decay to 0 .
Note: Taking real and imaginary parts, we get

$$
\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} f(x) \cos (n x) d x=0 \text { and } \lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} f(x) \sin (n x)=0
$$

This is the result we needed last time
Why? From Bessel's Inequality we get

$$
\sum_{n=-\infty}^{\infty}\left|a_{n}\right|^{2} \leq\|f\|^{2}<\infty
$$

So since $\sum_{n=-\infty}^{\infty}\left|a_{n}\right|^{2}$ converges this implies $\lim _{n \rightarrow \pm \infty} a_{n}=0$

3. Best Approximation Lemma

Corollary: [Best Approximation Lemma]
For any c_{n} we have $\left\|f-S_{N}(f)\right\| \leq\left\|f-\sum_{n=-N}^{N} c_{n} e_{n}\right\|$

Equality holds precisely when $c_{n}=a_{n}$ for all n in $[-N, N]$
This is really interesting! It says that the trigonometric polynomial that is closest to f is precisely the Fourier series!

Proof:

$$
\begin{aligned}
f-\sum_{n=-N}^{N} c_{n} e_{n} & =f-S_{N}(f)+S_{N}(f)-\sum_{n=-N}^{N} c_{n} e_{n} \\
& =f-S_{N}(f)+\sum_{n=-N}^{N} a_{n} e_{n}-\sum_{n=-N}^{N} c_{n} e_{n} \\
& =f-S_{N}(f)+\sum_{n=-N}^{N}\left(a_{n}-c_{n}\right) e_{n}
\end{aligned}
$$

Therefore from the Pythagorean Theorem and orthogonality, we get

$$
\left\|f-\sum_{n=-N}^{N} c_{n} e_{n}\right\|^{2}=\left\|f-S_{N}(f)\right\|^{2}+\underbrace{\left\|\sum_{n=-N}^{N}\left(a_{n}-c_{n}\right) e_{n}\right\|^{2}}_{\geq 0} \geq\left\|f-S_{N}(f)\right\|^{2} \checkmark
$$

And equality holds when

$$
\left\|\sum_{n=-N}^{N}\left(a_{n}-c_{n}\right) e_{n}\right\|^{2}=\sum_{n=-N}^{N}\left|a_{n}-c_{n}\right|^{2} \underbrace{\left\|e_{n}\right\|^{2}}_{1}=\sum_{n=-N}^{N}\left|a_{n}-c_{n}\right|^{2}=0
$$

Which implies $a_{n}=c_{n}$ for all n

4. Mean-Square Convergence

Recall: So far we have proven several nice results about convergence of Fourier series, such as:

If $f^{\prime \prime}$ is continuous then $S_{N}(f)$ converges to f uniformly
If f is Lipschitz or differentiable at x then $S_{N}(f)(x)$ converges to $f(x)$

What if f is just continuous? There is an example showing that $S_{N}(f)(x)$ might diverge for every $x!!!$]

That said we do have the following result:
Theorem: [Mean-Squared Convergence]
If f is continuous and 2π periodic, then $S_{N}(f)$ converges to f in the mean-squared sense, that is

$$
\lim _{N \rightarrow \infty} \int_{-\pi}^{\pi}\left|S_{N}(f)(x)-f(x)\right|^{2} d x=0
$$

The proof uses the best approximation lemma above, as well as the following:

Theorem: [Approximation]

If f is continuous and periodic with period 2π and $\epsilon>0$ then there is a trigonometric polynomial P such that for all x, we have

$$
|P(x)-f(x)|<\epsilon
$$

Proof: Just an application of Stone-Weierstrass, where we identify 2π periodic functions with functions on the unit circle in \mathbb{R}^{2} (compact) and \mathcal{A} is the set of trigonometric polynomials.

Proof of Mean-Squared Convergence: Let $\epsilon>0$ be given, then by the above there is a trigonometric polynomial P such that for all x

$$
|f(x)-P(x)|<\epsilon
$$

Notice in particular that

[^0]$$
\|f-P\|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \underbrace{|f(x)-P(x)|^{2}}_{<\epsilon^{2}} d x<\frac{\epsilon}{2 \pi}(2 \pi)=\epsilon^{2}
$$

Hence $\|f-P\|<\epsilon$
Then for some M and some c_{n} we have

$$
P(x)=\sum_{n=-M}^{M} c_{n} e_{n}
$$

Define $c_{n}=0$ outside of $[-M, M]$ and so by the best approximation Lemma, if $N>M$, we have

$$
\left\|f-S_{N}(f)\right\| \leq\left\|f-\sum_{n=-N}^{N} c_{n} e_{n}\right\|=\|f-\underbrace{\sum_{n=-M}^{M} c_{n} e_{n}}_{P}\|=\|f-P\|<\epsilon
$$

(In the middle, we used the fact that $c_{n}=0$ outside of $[-M, M]$)
And therefore $\lim _{N \rightarrow \infty}\left\|f-S_{N}(f)\right\|=0$
Note: This result is true even if f is just integrable! In that case it's enough to approximate f with continuous functions.

5. Parseval's Theorem

Video: Parseval's Theorem

Finally, we can deduce a result, which, in my opinion, is the most fun fact about Fourier series!

Theorem: [Parseval's Theorem]

$$
\sum_{n=-\infty}^{\infty}\left|a_{n}\right|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x
$$

Proof: From the orthogonal decomposition, we have

$$
\begin{gathered}
\|f\|^{2}=\left\|f-S_{N}(f)\right\|^{2}+\sum_{n=-N}^{N}\left|a_{n}\right|^{2} \\
\sum_{n=-N}^{N}\left|a_{n}\right|^{2}=\|f\|^{2}-\left\|f-S_{N}(f)\right\|^{2}
\end{gathered}
$$

Letting $N \rightarrow \infty$ in the above, using mean-squared convergence, we get

$$
\sum_{n=-\infty}^{\infty}\left|a_{n}\right|^{2}=\lim _{N \rightarrow \infty} \sum_{n=-N}^{N}\left|a_{n}\right|^{2}=\|f\|^{2}-\underbrace{\lim _{N \rightarrow \infty}\left\|f-S_{N}(f)\right\|^{2}}_{=0}=\|f\|^{2}
$$

Cool Application: Let $f(x)=x$ on $(-\pi, \pi)$. We have shown that the Fourier series of f is

$$
\sum_{n \neq 0} \frac{(-1)^{n+1}}{i n} e^{i n x}
$$

Parseval's Theorem then says that

$$
\begin{aligned}
\sum_{n \neq 0}\left|\frac{(-1)^{n+1}}{i n}\right|^{2} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} d x \\
\sum_{n \neq 0} \frac{1}{n^{2}} & =\frac{1}{2 \pi}\left(\frac{2 \pi^{3}}{3}\right) \\
\sum_{n=-\infty}^{-1} \frac{1}{n^{2}}+\sum_{n=1}^{\infty} \frac{1}{n^{2}} & =\frac{\pi^{2}}{3} \\
2 \sum_{n=1}^{\infty} \frac{1}{n^{2}} & =\frac{\pi^{2}}{3} \\
\sum_{n=1}^{\infty} \frac{1}{n^{2}} & =\frac{1}{2}\left(\frac{\pi^{2}}{3}\right)=\frac{\pi^{2}}{6}
\end{aligned}
$$

WOW!!! We can derive other fun identities like those, by considering different functions f.

[^0]: ${ }^{1}$ See section 2.2 in Chapter 3 of Stein and Shakarchi

