
LECTURE 9: ORTHOGONALITY

We can get very powerful properties of Fourier series if we examine
them under a more abstract viewpoint.

1. Orthogonality

Consider the space of 2π periodic integrable functions, which we can
now equip with an inner product:

Definition:

(f, g) =
1

2π

∫ π

−π
f(x)g(x)dx

It’s a function analog of the dot product for complex numbers

(x1, x2, · · · , xn) · (y1, y2, · · · , yn) =
n∑
k=1

xkyk

(since an integral is just a big sum)

We can then define the length of a function as

‖f‖2 = (f, f) =
1

2π

∫ 2π

0

|f(x)|2 dx

Notation: en(x) = einx

What makes the en so special is that
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Fact: The family {en}∞n=−∞ is orthonormal, that is

(en, em) =

{
1 if n = m

0 if n 6= m

Why?

(en, em) =
1

2π

∫ π

−π
einxeimxdx =

1

2π

∫ π

−π
einxe−imxdx =

1

2π

∫ π

−π
ei(n−m)xdx

If n 6= m, this integral is 0 (see the first lecture on Fourier series), and
if n = m this integral is 1 �

We will see today that orthogonality lies in the heart of a lot of pow-
erful results about Fourier series.

Notation:

an =: f̂(n) =
1

2π

∫ π

−π
f(x)e−inxdx = (f, en)

And in particular, we get

SN(f) =
N∑

n=−N

anen (linear combo of en)

And Fourier analysis is the study of

f − SN(f) = f −
N∑

n=−N

anen

2. Orthogonal Decomposition
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Geometrically, SN(f) is just the orthogonal projection of f on the span

of {en}Nn=−N (see picture in lecture), and in fact:

Fact: For any complex numbers bn,

(f − SN(f)) ⊥
N∑

n=−N

bnen

Fix m and calculate

(f − SN(f), em) =

((
f −

N∑
n=−N

anen

)
, em

)
= (f, em)︸ ︷︷ ︸

am

−
N∑

n=−N

an (en, em)︸ ︷︷ ︸
0 or 1

=am − am = 0

And the result follows by taking linear combinations of the em �

Recall: [Pythagorean Theorem]

If u ⊥ v then ‖u+ v‖2 = ‖u‖2 + ‖v‖2

Theorem: [Orthogonal Decomposition]

‖f‖2 = ‖f − SN(f)‖2 +
N∑

n=−N

|an|2

Might not look like much, but we’ll see soon why this is so useful.

Proof:

f = (f − SN(f)) + SN(f) = (f − SN(f)) +
N∑

n=−N

anen

And using the fact above and the Pythagorean Theorem, we get
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‖f‖2 = ‖f − SN(f)‖2 +

∥∥∥∥∥
N∑

n=−N

anen

∥∥∥∥∥
2

And since the en are orthonormal, applying the Pythagorean theorem
many times to the second term, we get∥∥∥∥∥

N∑
n=−N

anen

∥∥∥∥∥
2

=
N∑

n=−N

‖anen‖2 =
N∑

n=−N

|an|2 ‖en‖2︸ ︷︷ ︸
1

=
N∑

n=−N

|an|2

Which gives the desired result above �

Corollary: [Bessel’s Inequality]

∞∑
n=−∞

|an|2 ≤ ‖f‖2

Proof:

‖f‖2 = ‖f − SN(f)‖2︸ ︷︷ ︸
≥0

+
N∑

n=−N

|an|2 ≥
N∑

n=−N

|an|2

Hence for all N , we have

N∑
n=−N

|an|2 ≤ ‖f‖2

And taking the limit as N goes to ∞ gives the result �

Corollary: [Riemann Lebesgue Lemma]

If f is 2π periodic and integrable, then limn→±∞ f̂(n) = 0
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That is, the Fourier coefficients of an integrable function decay to 0.

Note: Taking real and imaginary parts, we get

lim
n→∞

∫ π

−π
f(x) cos(nx)dx = 0 and lim

n→∞

∫ π

−π
f(x) sin(nx) = 0

This is the result we needed last time

Why? From Bessel’s Inequality we get

∞∑
n=−∞

|an|2 ≤ ‖f‖2 <∞

So since
∑∞

n=−∞ |an|
2 converges this implies limn→±∞ an = 0 �

3. Best Approximation Lemma

Corollary: [Best Approximation Lemma]

For any cn we have ‖f − SN(f)‖ ≤

∥∥∥∥∥f −
N∑

n=−N

cnen

∥∥∥∥∥
Equality holds precisely when cn = an for all n in [−N,N ]

This is really interesting! It says that the trigonometric polynomial
that is closest to f is precisely the Fourier series!

Proof:
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f −
N∑

n=−N

cnen =f−SN(f) + SN(f)−
N∑

n=−N

cnen

=f − SN(f) +
N∑

n=−N

anen −
N∑

n=−N

cnen

=f − SN(f) +
N∑

n=−N

(an − cn) en

Therefore from the Pythagorean Theorem and orthogonality, we get∥∥∥∥∥f −
N∑

n=−N

cnen

∥∥∥∥∥
2

= ‖f − SN(f)‖2+

∥∥∥∥∥
N∑

n=−N

(an − cn) en

∥∥∥∥∥
2

︸ ︷︷ ︸
≥0

≥ ‖f − SN(f)‖2X

And equality holds when∥∥∥∥∥
N∑

n=−N

(an − cn) en

∥∥∥∥∥
2

=
N∑

n=−N

|an − cn|2 ‖en‖2︸ ︷︷ ︸
1

=
N∑

n=−N

|an − cn|2 = 0

Which implies an = cn for all n �

4. Mean-Square Convergence

Recall: So far we have proven several nice results about convergence
of Fourier series, such as:

If f ′′ is continuous then SN(f) converges to f uniformly

If f is Lipschitz or differentiable at x then SN(f)(x) converges to f(x)
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What if f is just continuous? There is an example showing that
SN(f)(x) might diverge for every x!!!1

That said we do have the following result:

Theorem: [Mean-Squared Convergence]

If f is continuous and 2π periodic, then SN(f) converges to f in the
mean-squared sense, that is

lim
N→∞

∫ π

−π
|SN(f)(x)− f(x)|2 dx = 0

The proof uses the best approximation lemma above, as well as the
following:

Theorem: [Approximation]

If f is continuous and periodic with period 2π and ε > 0 then there is
a trigonometric polynomial P such that for all x, we have

|P (x)− f(x)| < ε

Proof: Just an application of Stone-Weierstrass, where we identify 2π
periodic functions with functions on the unit circle in R2 (compact)
and A is the set of trigonometric polynomials. �

Proof of Mean-Squared Convergence: Let ε > 0 be given, then
by the above there is a trigonometric polynomial P such that for all x

|f(x)− P (x)| < ε

Notice in particular that

1See section 2.2 in Chapter 3 of Stein and Shakarchi
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‖f − P‖2 =
1

2π

∫ π

−π
|f(x)− P (x)|2︸ ︷︷ ︸

<ε2

dx <
ε

2π
(2π) = ε2

Hence ‖f − P‖ < ε

Then for some M and some cn we have

P (x) =
M∑

n=−M

cnen

Define cn = 0 outside of [−M,M ] and so by the best approximation
Lemma, if N > M , we have

‖f − SN(f)‖ ≤

∥∥∥∥∥f −
N∑

n=−N

cnen

∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥∥
f −

M∑
n=−M

cnen︸ ︷︷ ︸
P

∥∥∥∥∥∥∥∥∥∥
= ‖f − P‖ < ε

(In the middle, we used the fact that cn = 0 outside of [−M,M ])

And therefore limN→∞ ‖f − SN(f)‖ = 0 �

Note: This result is true even if f is just integrable! In that case it’s
enough to approximate f with continuous functions.

5. Parseval’s Theorem

Video: Parseval’s Theorem

https://www.youtube.com/watch?v=YMleINbiNlE
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Finally, we can deduce a result, which, in my opinion, is the most fun
fact about Fourier series!

Theorem: [Parseval’s Theorem]

∞∑
n=−∞

|an|2 =
1

2π

∫ π

−π
|f(x)|2 dx

Proof: From the orthogonal decomposition, we have

‖f‖2 = ‖f − SN(f)‖2 +
N∑

n=−N

|an|2

N∑
n=−N

|an|2 = ‖f‖2 − ‖f − SN(f)‖2

Letting N →∞ in the above, using mean-squared convergence, we get

∞∑
n=−∞

|an|2 = lim
N→∞

N∑
n=−N

|an|2 = ‖f‖2 − lim
N→∞

‖f − SN(f)‖2︸ ︷︷ ︸
=0

= ‖f‖2 �

Cool Application: Let f(x) = x on (−π, π). We have shown that
the Fourier series of f is

∑
n 6=0

(−1)n+1

in
einx
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Parseval’s Theorem then says that

∑
n 6=0

∣∣∣∣∣(−1)n+1

in

∣∣∣∣∣
2

=
1

2π

∫ π

−π
x2dx

∑
n 6=0

1

n2
=

1

2π

(
2π3

3

)
−1∑

n=−∞

1

n2
+
∞∑
n=1

1

n2
=
π2

3

2
∞∑
n=1

1

n2
=
π2

3

∞∑
n=1

1

n2
=

1

2

(
π2

3

)
=
π2

6

WOW!!! We can derive other fun identities like those, by considering
different functions f .
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