Instructor: Peyam Tabrizian

Part I: Multiple Choice. Select the correct answer for each problem and make a table of your answers at the top of the first page of your exam. There are 8 problems, each worth 7 points, for a total of 56 possible points.

1. Which vector is parallel to $\mathbf{u}=\langle 2,2,-1\rangle$ and has a magnitude of 2 ?
A. $\frac{2}{3}\langle 2,2,-1\rangle$
B. $\frac{1}{9}\langle 2,2,-1\rangle$
C. $\frac{1}{3}\langle 2,2,-1\rangle$
D. $\frac{1}{3}\langle-2,-2,1\rangle$
E. None of the above
2. The angle between the vectors $\mathbf{u}=\langle 3,1\rangle$ and $\mathbf{v}=\langle 1,2\rangle$ is
A. 30°
B. 45°
C. 60°
D. 90°
E. None of the above
3. If \mathbf{u} and \mathbf{v} are parallel vectors in \mathbb{R}^{3}, then $\mathbf{u} \times \mathbf{v}$ is
A. parallel to \mathbf{u} and \mathbf{v}
B. the zero vector
C. undefined
D. $|\mathbf{u}||\mathbf{v}|$
E. None of the above
4. Which of the following is a valid parameterization for the intersection curve of the surfaces $x^{2}+y^{2}=16$ and $z=2 y ?$
A. $\langle 4 \cos t, 4 \sin t, 2 t\rangle$
B. $\langle\cos t, \sin t, 16 \sin t\rangle$
C. $\langle 4 \cos t, 4 \sin t, 8 \sin t\rangle$
D. $\langle 16 \cos t, 16 \sin t, 32 t\rangle$
E. None of the above
5. An equation for the line through the points $(2,4,-5)$ and $(1,2,1)$ is
A. $(x-2)+2(y-4)+(z+5)=0$
B. $\mathbf{r}(t)=\langle 2 t, 4 t,-5 t\rangle$
C. $\mathbf{r}(t)=\langle-1+2 t,-2+4 t, 6-5 t\rangle$
D. $\mathbf{r}(t)=\langle 2-t, 4-2 t,-5+6 t\rangle$
E. None of the above
6. The tangent vector of $\mathbf{r}(t)=\left\langle 2 t, 3 t^{2}+4 t, \frac{1}{t}\right\rangle$ at $t=1$ is
A. $\langle 2,10,-1\rangle$
B. $\langle 2,7,1\rangle$
C. $\langle 1,3,0\rangle$
D. $\langle 1,5,-1\rangle$
E. None of the above
7. Let $\mathbf{u}=\langle 2,1,1\rangle$ and $\mathbf{v}=\langle 1,0,2\rangle$. The area of the parallelogram formed by \mathbf{u} and \mathbf{v} is
A. 14
B. $\sqrt{14} / 2$
C. 4
D. $\sqrt{14}$
E. None of the above
8. If an object has a position vector $\mathbf{r}(t)=\left\langle\cos (2 t), 3 t^{2}+t^{3}, e^{-3 t}\right\rangle$, then its acceleration vector at $t=0$ is
A. $\left\langle 4,6, \frac{1}{9}\right\rangle$
B. $\langle 1,0,1\rangle$
C. $\langle-4,6,9\rangle$
D. $\left\langle-\frac{1}{4}, 0, \frac{1}{9}\right\rangle$
E. None of the above

Part II: Free Response. Solve each problem and show all work clearly. Draw a box around your final answers. There are 3 problems worth a total of 44 points.

1. [14 points] Consider the curve $\mathbf{r}(t)=\langle\cos (2 t), \sin (2 t), 4 t+3\rangle, 0 \leq t \leq 2 \pi$.
a) [7 pts$]$ Find the arc length of the curve. Give an exact symbolic answer, no approximations.
b) $[7 \mathrm{pts}]$ Find a vector equation of the tangent line $\mathbf{L}(t)$ to the curve when $t=\pi / 2$.
2. [14 points] A plane in \mathbb{R}^{3} contains the points $(2,1,1),(1,4,-1)$ and $(3,2,0)$.
a) [7 pts$]$ Find the values of b and c such that $\mathbf{n}=\langle 1, b, c\rangle$ is a normal vector for the plane.
b) $[7 \mathrm{pts}]$ Find the equation of the plane and state it in the form $A x+B y+C z=D$.
3. [16 points] A particle has a velocity vector $\mathbf{v}(t)=\left\langle 2 t-3,4 \sin t, 6 e^{-2 t}\right\rangle \mathrm{m} / \mathrm{s}$ and an initial position $\mathbf{r}(0)=\langle 2,4,3\rangle \mathrm{m}$.
a) [8 pts] Find the position function $\mathbf{r}(t)$ of the particle.
b) $[8 \mathrm{pts}]$ If the particle has a mass of 5 kg , find the magnitude of the force acting on it when $t=0$ (Exact answer please)
