MATH 409 - MIDTERM 1 - SOLUTIONS

1. Option 1: The Monotone Sequence Theorem

Suppose $\left(s_{n}\right)$ is increasing and bounded above (by M)

Consider $S=\left\{s_{n} \mid n \in \mathbb{N}\right\}$

Then S is bounded above (by M) and therefore has a least upper bound s.

Claim: $\left(s_{n}\right)$ converges to s

Proof: Let $\epsilon>0$ be given, and consider $s-\epsilon<s=\sup (S)$, and hence there is s_{N} such that $s_{N}>s-\epsilon$.

With that N, if $n>N$, since $\left(s_{n}\right)$ is increasing we have $s_{n}>$ $s_{N}>s-\epsilon$, so $s_{n}>s-\epsilon$, so $s_{n}-s>-\epsilon$.

But also by definition of sup, $s_{n} \leq s$, so $s_{n}-s \leq 0<\epsilon$.

And putting both things together, we get $-\epsilon<s_{n}-s<\epsilon$, so $\left|s_{n}-s\right|<\epsilon \checkmark$

[^0]Option 2: If $\left(s_{n}\right)$ converges to s, then $\left(s_{n}\right)$ is bounded Suppose $s_{n} \rightarrow s$, then by the definition of a limit with $\epsilon=1$, we get that there is N such that if $n>N$, then $\left|s_{n}-s\right|<1$.

With that N, if $n>N$, then

$$
\left|s_{n}\right|=\left|s_{n}-s+s\right| \leq\left|s_{n}-s\right|+|s|<1+|s|
$$

Let $M=\max \left\{\left|s_{1}\right|, \cdots,\left|s_{N}\right|, 1+|s|\right\}$.

Case 1: $n \leq N$, then

$$
\left|s_{n}\right| \leq \max \left\{\left|s_{1}\right|, \cdots,\left|s_{N}\right|\right\} \leq M
$$

Case 2: $n>N$, then

$$
\left|s_{n}\right|<1+|s| \leq M
$$

So in either case $\left|s_{n}\right| \leq M \checkmark$
2. (a) For all $\epsilon>0$ there is N such that if $n>N$, then $\left|s_{n}-s\right|<\epsilon$
(b) STEP 1: Scratchwork

$$
\left|\frac{2 n+3}{5 n+7}-\frac{2}{5}\right|=\left|\frac{(2 n+3)(5)-2(5 n+7)}{5(5 n+7)}\right|=\left|\frac{10 n+15-10 n-14}{5(5 n+7)}\right|=\frac{1}{5(5 n+7)}<\epsilon
$$

Which gives:

$$
\frac{1}{5 n+7}<5 \epsilon \Rightarrow 5 n+7>\frac{1}{5 \epsilon} \Rightarrow 5 n>\frac{1}{5 \epsilon}-7 \Rightarrow n>\frac{1}{25 \epsilon}-\frac{7}{5}
$$

Which suggests to let $N=\frac{1}{25 \epsilon}-\frac{7}{5}$
STEP 2: Actual Proof
Let $\epsilon>0$ be given, let $N=\frac{1}{25 \epsilon}-\frac{7}{5}$, then if $n>N$, we get:

$$
\left|\frac{2 n+3}{5 n+7}-\frac{2}{5}\right|=\frac{1}{5(5 n+7)}
$$

But if $n>N=\frac{1}{25 \epsilon}-\frac{7}{5}$, then $5 n>\frac{1}{5 \epsilon}-7$ so $5 n+7>\frac{1}{5 \epsilon}$ so $\frac{1}{5 n+7}<5 \epsilon$ and so $\frac{1}{5(5 n+7)}<\epsilon$, hence

$$
\left|\frac{2 n+3}{5 n+7}-\frac{2}{5}\right|=\frac{1}{5(5 n+7)}<\epsilon
$$

And therefore $\lim _{n \rightarrow \infty} \frac{2 n+3}{5 n+7}=\frac{2}{5}$
3. (a) If $\left(s_{n}\right)$ is a sequence that is increasing and bounded above, then $\left(s_{n}\right)$ converges.
(b) Claim \# 1: $s_{n} \geq \sqrt{2}$ for all n

Proof: Let P_{n} be the proposition: $s_{n} \geq \sqrt{2}$

Base Case: $s_{1}=2=\sqrt{4} \geq \sqrt{2} \checkmark$

Inductive Step: Suppose P_{n} is true, that is $s_{n} \geq \sqrt{2}$, show P_{n+1} is true, that is $s_{n+1} \geq \sqrt{2}$, but:

$$
\begin{aligned}
s_{n+1}-\sqrt{2} & =\left(\frac{s_{n}}{2}+\frac{1}{s_{n}}\right)-\sqrt{2} \\
& =\frac{\left(s_{n}\right)^{2}+2-2 \sqrt{2} s_{n}}{2 s_{n}} \\
& =\frac{\left(s_{n}\right)^{2}-2 \sqrt{2} s_{n}+(\sqrt{2})^{2}}{2 s_{n}} \\
& =\frac{\left(s_{n}-\sqrt{2}\right)^{2}}{2 s_{n}} \geq 0
\end{aligned}
$$

Hence $s_{n+1} \geq \sqrt{2}$, and by induction $s_{n} \geq 0$ for all n

Claim \# 2: s_{n} is decreasing

$$
s_{n+1}-s_{n}=\frac{s_{n}}{2}+\frac{1}{s_{n}}-s_{n}=-\frac{s_{n}}{2}+\frac{1}{s_{n}}=\frac{-\left(s_{n}\right)^{2}+2}{2 s_{n}}
$$

However, since $s_{n} \geq \sqrt{2},\left(s_{n}\right)^{2} \geq 2$, so $2-\left(s_{n}\right)^{2} \leq 0$ and so $s_{n+1}-s_{n} \leq 0$ so $s_{n+1} \leq s_{n}$

Finally, since $\left(s_{n}\right)$ is decreasing and bounded below (by M), $\left(s_{n}\right)$ converges, so taking $n \rightarrow \infty$ in $s_{n+1}=\frac{s_{n}}{2}+\frac{1}{s_{n}}$, we get

$$
\begin{aligned}
s & =\frac{s}{2}+\frac{1}{s} \\
s-\frac{s}{2} & =\frac{1}{s} \\
\frac{s}{2} & =\frac{1}{s} \\
s^{2} & =2 \\
s & =\sqrt{2}
\end{aligned}
$$

(Here we use the fact that $s_{n} \geq 0$ so $s \geq 0$)
Hence s_{n} converges to $\sqrt{2}$
4. (a) If S is bounded above by M, then $\sup (S)=M$ means that for all $M_{1}<M$ there is $s \in S$ such that $s>M_{1}$.
(b) Let $M=\sup (S)$ and let's show that $\sup (k S)=k M$

Upper Bound: Suppose $x \in k S$, then $x=k s$ for some $s \in S$, but since M is an upper bound for S and $k>0$, we have $x=k s \leq k M$, so $k M$ is an upper bound for $k S \checkmark$

Least Upper Bound: Suppose $M_{1}<k M$, then $\frac{M_{1}}{k}<M=$ $\sup (S)$, so by definition of \sup there is $s \in S$ with $s>\frac{M_{1}}{k}$, but then $k s>M_{1}$, so if you let $x=k s \in k S$, then $x>M_{1} \checkmark$

Hence $\sup (k S)=k M$.
(c) The statement is FALSE if $k<0$. For example, let $S=$ $[1,2]$ and $k=-3$, then $k S=-3 S=[-6,-3]$, so $\sup (k S)=-3$, but $k \sup (S)=-3 \sup (S)=-3(2)=-6 \Rightarrow \Leftarrow$

You could also have chosen $S=\{0,1\}$ for example, that would have worked too.
5. (a)

$$
\limsup _{n \rightarrow \infty} s_{n}=\lim _{N \rightarrow \infty} \sup \left\{s_{n} \mid n>N\right\}
$$

(b) Notice that for all N, if $n>N$, then we have:

$$
\begin{aligned}
& s_{n} \leq \sup \left\{s_{n} \mid n>N\right\} \\
& t_{n} \leq \sup \left\{t_{n} \mid n>N\right\}
\end{aligned}
$$

Therefore

$$
s_{n}+t_{n} \leq \sup \left\{s_{n} \mid n>N\right\}+\sup \left\{t_{n} \mid n>N\right\}
$$

Taking the sup of the left hand side over $n>N$, we get:

$$
\sup \left\{s_{n}+t_{n} \mid n>N\right\} \leq \sup \left\{s_{n} \mid n>N\right\}+\sup \left\{t_{n} \mid n>N\right\}
$$

Finally, taking the limit as $N \rightarrow \infty$ on both sides, we get:

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} s_{n}+t_{n} & =\lim _{N \rightarrow \infty} \sup \left\{s_{n}+t_{n} \mid n>N\right\} \\
& \leq \lim _{N \rightarrow \infty} \sup \left\{s_{n} \mid n>N\right\}+\sup \left\{t_{n} \mid n>N\right\} \\
& =\lim _{N \rightarrow \infty} \sup \left\{s_{n} \mid n>N\right\}+\lim _{N \rightarrow \infty} \sup \left\{t_{n} \mid n>N\right\} \\
& =\limsup _{n \rightarrow \infty} s_{n}+\limsup _{n \rightarrow \infty} t_{n}
\end{aligned}
$$

(c) Let $s_{n}=(-1)^{n}$ and $t_{n}=-s_{n}=-(-1)^{n}=(-1)^{n+1}$

Then $s_{n}+t_{n}=(-1)^{n}-(-1)^{n}=0$, so

$$
\limsup _{n \rightarrow \infty} s_{n}+t_{n}=\limsup _{n \rightarrow \infty} 0=0
$$

But $\limsup s_{n}+\limsup t_{n}=\limsup (-1)^{n}+\limsup (-1)^{n+1}=1+1=2$

$$
\text { Hence: } \limsup _{n \rightarrow \infty}\left(s_{n}+t_{n}\right) \neq\left(\limsup _{n \rightarrow \infty} s_{n}\right)+\left(\limsup _{n \rightarrow \infty} t_{n}\right)
$$

[^0]: Date: Thursday, September 30, 2021.

