
MATH 409 − MIDTERM 1 − SOLUTIONS

1. Option 1: The Monotone Sequence Theorem

Suppose (sn) is increasing and bounded above (by M)

Consider S = {sn | n ∈ N}

Then S is bounded above (by M) and therefore has a least up-
per bound s.

Claim: (sn) converges to s

Proof: Let ϵ > 0 be given, and consider s − ϵ < s = sup(S),
and hence there is sN such that sN > s− ϵ.

With that N , if n > N , since (sn) is increasing we have sn >
sN > s− ϵ, so sn > s− ϵ, so sn − s > −ϵ.

But also by definition of sup, sn ≤ s, so sn − s ≤ 0 < ϵ.

And putting both things together, we get −ϵ < sn − s < ϵ, so
|sn − s| < ϵ ✓ □
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Option 2: If (sn) converges to s, then (sn) is bounded

Suppose sn → s, then by the definition of a limit with ϵ = 1,
we get that there is N such that if n > N , then |sn − s| < 1.

With that N , if n > N , then

|sn| = |sn − s+ s| ≤ |sn − s|+ |s| < 1 + |s|

Let M = max {|s1| , · · · , |sN | , 1 + |s|}.

Case 1: n ≤ N, then

|sn| ≤ max {|s1| , · · · , |sN |} ≤ M

Case 2: n > N , then

|sn| < 1 + |s| ≤ M

So in either case |sn| ≤ M ✓ □
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2. (a) For all ϵ > 0 there is N such that if n > N , then |sn − s| < ϵ

(b) STEP 1: Scratchwork∣∣∣∣2n+ 3

5n+ 7
− 2

5

∣∣∣∣ = ∣∣∣∣(2n+ 3)(5)− 2(5n+ 7)

5(5n+ 7)

∣∣∣∣ = ∣∣∣∣10n+ 15− 10n− 14

5(5n+ 7)

∣∣∣∣ = 1

5(5n+ 7)
< ϵ

Which gives:

1

5n+ 7
< 5ϵ ⇒ 5n+ 7 >

1

5ϵ
⇒ 5n >

1

5ϵ
− 7 ⇒ n >

1

25ϵ
− 7

5

Which suggests to let N = 1
25ϵ −

7
5

STEP 2: Actual Proof

Let ϵ > 0 be given, let N = 1
25ϵ −

7
5 , then if n > N , we get:∣∣∣∣2n+ 3

5n+ 7
− 2

5

∣∣∣∣ = 1

5(5n+ 7)

But if n > N = 1
25ϵ −

7
5 , then 5n > 1

5ϵ − 7 so 5n + 7 > 1
5ϵ so

1
5n+7 < 5ϵ and so 1

5(5n+7) < ϵ, hence∣∣∣∣2n+ 3

5n+ 7
− 2

5

∣∣∣∣ = 1

5(5n+ 7)
< ϵ

And therefore limn→∞
2n+3
5n+7 =

2
5 □
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3. (a) If (sn) is a sequence that is increasing and bounded above,
then (sn) converges.

(b) Claim # 1: sn ≥
√
2 for all n

Proof: Let Pn be the proposition: sn ≥
√
2

Base Case: s1 = 2 =
√
4 ≥

√
2 ✓

Inductive Step: Suppose Pn is true, that is sn ≥
√
2, show

Pn+1 is true, that is sn+1 ≥
√
2, but:

sn+1 −
√
2 =

(
sn
2

+
1

sn

)
−

√
2

=
(sn)

2 + 2− 2
√
2sn

2sn

=
(sn)

2 − 2
√
2sn +

(√
2
)2

2sn

=

(
sn −

√
2
)2

2sn
≥ 0

Hence sn+1 ≥
√
2, and by induction sn ≥ 0 for all n

Claim # 2: sn is decreasing

sn+1 − sn =
sn
2

+
1

sn
− sn = −sn

2
+

1

sn
=

− (sn)
2 + 2

2sn
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However, since sn ≥
√
2, (sn)

2 ≥ 2, so 2 − (sn)
2 ≤ 0 and so

sn+1 − sn ≤ 0 so sn+1 ≤ sn

Finally, since (sn) is decreasing and bounded below (by M),
(sn) converges, so taking n → ∞ in sn+1 =

sn
2 + 1

sn
, we get

s =
s

2
+

1

s

s− s

2
=
1

s
s

2
=
1

s
s2 =2

s =
√
2

(Here we use the fact that sn ≥ 0 so s ≥ 0)

Hence sn converges to
√
2
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4. (a) If S is bounded above by M , then sup(S) = M means that
for all M1 < M there is s ∈ S such that s > M1.

(b) Let M = sup(S) and let’s show that sup(kS) = kM

Upper Bound: Suppose x ∈ kS, then x = ks for some s ∈ S,
but since M is an upper bound for S and k > 0, we have
x = ks ≤ kM , so kM is an upper bound for kS ✓

Least Upper Bound: Suppose M1 < kM , then M1

k < M =

sup(S), so by definition of sup there is s ∈ S with s > M1

k , but
then ks > M1, so if you let x = ks ∈ kS, then x > M1 ✓

Hence sup(kS) = kM . □

(c) The statement is FALSE if k < 0. For example, let S =
[1, 2] and k = −3, then kS = −3S = [−6,−3], so sup(kS) = −3,
but k sup(S) = −3 sup(S) = −3(2) = −6 ⇒⇐

You could also have chosen S = {0, 1} for example, that would
have worked too.
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5. (a)

lim sup
n→∞

sn = lim
N→∞

sup {sn | n > N}

(b) Notice that for all N , if n > N , then we have:

sn ≤ sup {sn | n > N}
tn ≤ sup {tn | n > N}

Therefore

sn + tn ≤ sup {sn | n > N}+ sup {tn | n > N}

Taking the sup of the left hand side over n > N , we get:

sup {sn + tn | n > N} ≤ sup {sn | n > N}+ sup {tn | n > N}

Finally, taking the limit as N → ∞ on both sides, we get:

lim sup
n→∞

sn + tn = lim
N→∞

sup {sn + tn | n > N}

≤ lim
N→∞

sup {sn | n > N}+ sup {tn | n > N}

= lim
N→∞

sup {sn | n > N}+ lim
N→∞

sup {tn | n > N}

= lim sup
n→∞

sn + lim sup
n→∞

tn

(c) Let sn = (−1)n and tn = −sn = −(−1)n = (−1)n+1

Then sn + tn = (−1)n − (−1)n = 0, so

lim sup
n→∞

sn + tn = lim sup
n→∞

0 = 0
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But lim sup
n→∞

sn+lim sup
n→∞

tn = lim sup
n→∞

(−1)n+lim sup
n→∞

(−1)n+1 = 1+1 = 2

Hence: lim sup
n→∞

(sn + tn) ̸=
(
lim sup
n→∞

sn

)
+

(
lim sup
n→∞

tn

)


