
1.

Let Pn be the proposition: sn ≤ 2

Base Case: s1 = 2 ≤ 2 X

Inductive Step: Suppose Pn is true that is sn ≤ 2. Show Pn+1

is true, that is sn+1 ≤ 2.

However:

sn+1 =
√

2 + sn ≤
√

2 + 2 =
√

4 = 2X

Where in the second step we used our inductive hypothesis.

Hence Pn+1 is true and so Pn is true for all n, that is sn < 2 for
all n. �
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2.

Suppose the statement is false, that is there is x ∈ R such that
for all k ∈ Z, k ≤ x.

Let S = {k | k ∈ Z} (= Z)

By assumption, S is bounded above by x and therefore, S has
a least upper bound M = Sup(S).

Consider M − 1. Since M − 1 < M = sup(S), hence there is
k ∈ S such that k > M − 1⇒M < k + 1.

But then since k + 1 ∈ S, we found an element in S that is
> M , which contradicts the fact that M is an upper bound of
S ⇒⇐ �
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3.

STEP 1: Scratchwork:

|f(sn)− f(s)| ≤ C |sn − s| < ε⇒ |sn − s| <
ε

C

STEP 2: Actual Proof:

Let ε > 0 be given.

Then, since sn → s, there is N such that if n > N , then
|sn − s| < ε

C .

But then, with that same N , if n > N , then

|f(sn)− f(s)| ≤ C |sn − s| < C
( ε
C

)
= εX

Therefore f(sn)→ f(s) �
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4.

Let S = {sn | n ∈ N}

First of all, since (sn) is bounded above by M , sn ≤ M for all
n, and therefore S is bounded above by M .

To show sup(S) = M , suppose M1 < M and find sn ∈ S such
that sn > M1

Let ε > 0 TBA, then since sn → M , there is N such that if
n > N , then

|sn −M | < ε⇒ sn −M > −ε⇒ sn > M − ε

Choose ε > 0 such that M − ε ≥M1, that is ε ≤M −M1.

Then for all n > N , we have:

sn > M − ε ≥M − (M −M1) = M1 ⇒ sn > M1

Hence there is at least one sn such that sn > M1 (in fact infin-
itely many of them), and therefore sup(S) = M �


