Let P_{n} be the proposition: $s_{n} \leq 2$

Base Case: $s_{1}=2 \leq 2 \checkmark$

Inductive Step: Suppose P_{n} is true that is $s_{n} \leq 2$. Show P_{n+1} is true, that is $s_{n+1} \leq 2$.

However:

$$
s_{n+1}=\sqrt{2+s_{n}} \leq \sqrt{2+2}=\sqrt{4}=2 \checkmark
$$

Where in the second step we used our inductive hypothesis.
Hence P_{n+1} is true and so P_{n} is true for all n, that is $s_{n}<2$ for all n.

Suppose the statement is false, that is there is $x \in \mathbb{R}$ such that for all $k \in \mathbb{Z}, k \leq x$.

Let $S=\{k \mid k \in \mathbb{Z}\}(=\mathbb{Z})$

By assumption, S is bounded above by x and therefore, S has a least upper bound $M=\operatorname{Sup}(S)$.

Consider $M-1$. Since $M-1<M=\sup (S)$, hence there is $k \in S$ such that $k>M-1 \Rightarrow M<k+1$.

But then since $k+1 \in S$, we found an element in S that is $>M$, which contradicts the fact that M is an upper bound of $S \Rightarrow \Leftarrow$
3.

STEP 1: Scratchwork:

$$
\left|f\left(s_{n}\right)-f(s)\right| \leq C\left|s_{n}-s\right|<\epsilon \Rightarrow\left|s_{n}-s\right|<\frac{\epsilon}{C}
$$

STEP 2: Actual Proof:

Let $\epsilon>0$ be given.

Then, since $s_{n} \rightarrow s$, there is N such that if $n>N$, then $\left|s_{n}-s\right|<\frac{\epsilon}{C}$.

But then, with that same N, if $n>N$, then

$$
\left|f\left(s_{n}\right)-f(s)\right| \leq C\left|s_{n}-s\right|<C\left(\frac{\epsilon}{C}\right)=\epsilon \checkmark
$$

Therefore $f\left(s_{n}\right) \rightarrow f(s)$
4.

Let $S=\left\{s_{n} \mid n \in \mathbb{N}\right\}$

First of all, since $\left(s_{n}\right)$ is bounded above by $M, s_{n} \leq M$ for all n, and therefore S is bounded above by M.

To show $\sup (S)=M$, suppose $M_{1}<M$ and find $s_{n} \in S$ such that $s_{n}>M_{1}$

Let $\epsilon>0 \mathrm{TBA}$, then since $s_{n} \rightarrow M$, there is N such that if $n>N$, then

$$
\left|s_{n}-M\right|<\epsilon \Rightarrow s_{n}-M>-\epsilon \Rightarrow s_{n}>M-\epsilon
$$

Choose $\epsilon>0$ such that $M-\epsilon \geq M_{1}$, that is $\epsilon \leq M-M_{1}$.

Then for all $n>N$, we have:

$$
s_{n}>M-\epsilon \geq M-\left(M-M_{1}\right)=M_{1} \Rightarrow s_{n}>M_{1}
$$

Hence there is at least one s_{n} such that $s_{n}>M_{1}$ (in fact infinitely many of them), and therefore $\sup (S)=M$

