1. (10 points)

Let $\left(s_{n}\right)$ be the sequence defined by $s_{1}=2$ and, for all $n \in \mathbb{N}$:

$$
s_{n+1}=\sqrt{2+s_{n}}
$$

Use induction on n to show that $s_{n} \leq 2$ for all $n \in \mathbb{N}$
2. (10 points)

Use contradiction to prove that for every $x \in \mathbb{R}$ there is an integer $k \in \mathbb{Z}$ such that $k>x$.

Do not use the Archimedean property!

Hint: At some point you might consider $M-1$ (for some M).

3. (10 points)

Let f be a function with the following property: There is $C>0$ such that, for all a and $b,|f(b)-f(a)| \leq C|b-a|$

Let $\left(s_{n}\right)$ be a sequence in \mathbb{R} that converges to s. Show that $f\left(s_{n}\right)$ converges to $f(s)$. Include your scratchwork.

Note: $f\left(s_{n}\right)$ means " f of s_{n} " and $f(s)$ means " f of s "

4. (10 points)

Let $\left(s_{n}\right)$ be a sequence in \mathbb{R} that is bounded above by M. Suppose moreover that $\left(s_{n}\right)$ converges to M. Show that

$$
\sup \left\{s_{n} \mid n \in \mathbb{N}\right\}=M
$$

