Part I: Multiple Choice. Select the correct answer for each problem. Make a table of all your answers at the top of the first page of your exam. There are 8 problems, each worth 7 points, for a total of 56 possible points.

1. The domain of the function $f(x, y)=\ln (x)+\ln (y)$ is
A. the entire $x y$ plane
B. the first and second quadrants of the $x y$ plane
C. the first quadrant of the $x y$ plane
D. the first and third quadrants of the $x y$ plane
E. none of the above
2. The level curve $z=1$ of the function $z=6 x^{2}+3 y^{2}$ is a
A. parabola
B. ellipse
C. straight line
D. hyperbola
E. none of the above
3. The equation of the tangent plane of the surface $z=3 x^{2}-\frac{1}{y}$ at the point $(2,-1)$ is
A. $z=12 x+y-23$
B. $z=12 x+y+13$
C. $z=12 x+y-12$
D. $z=12 x+y-10$
E. none of the above
4. If $w=2 x y-3 y, x=3 u-2 v$, and $y=v^{2} \sin u$, then $\partial w / \partial u$ equals
A. $(2 y)(3)+(2 x-3)(2 v \sin u)$
B. $(2 y)(-2)+(2 x-3)(2 v \sin u)$
C. $(2 y)(3)+(2 x-3)\left(v^{2} \cos u\right)$
D. $(2 y)(-2)+(2 x)\left(v^{2} \cos u\right)$
E. none of the above
5. Which of the following is a normal vector for the surface $x^{2} y z^{4}-2 z=1$ at the point $(1,3,1)$ ?
A. $\langle 6,1,10\rangle$
B. $\langle-1,-3,-1\rangle$
C. $\langle 6,1,12\rangle$
D. $\langle 1,6,4\rangle$
E. none of the above
6. Which of the following represents the double integral $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^{2}}} \cos \left(x^{2}+y^{2}\right) d y d x$ in polar coordinates?
A. $\int_{0}^{\pi} \int_{0}^{3} \cos \left(r^{2}\right) d r d \theta$
B. $\int_{0}^{\pi} \int_{0}^{3} r \cos \left(r^{2}\right) d r d \theta$
C. $\int_{0}^{\pi} \int_{0}^{3} r \cos (r) d r d \theta$
D. $\int_{0}^{2 \pi} \int_{0}^{3} r \cos \left(r^{2}\right) d r d \theta$
E. none of the above
7. Calculate $\iint_{D}\left(x^{2}+y^{2}\right)^{5 / 2} d x d y$ where $D$ is the disk of radius 1 centered at $(0,0)$ in the first quadrant
A. $\frac{\pi}{5}$
B. $\frac{\pi}{7}$
C. $\frac{\pi}{10}$
D. $\frac{\pi}{14}$
E. none of the above
8. If $D$ is the region bounded by the lines $y=0$, $x=2$ and $y=2 x$, then the value of the double integral $\iint_{D} 1 d y d x$ is
A. 1
B. 2
C. 4
D. 8
E. none of the above

Part II: Free Response. Solve each problem and show all work clearly. Draw a box around your final answers and include units where applicable. Give exact answers to all questions; do NOT state the answers as decimal approximations There are 3 problems worth a total of 44 points.

1. [16 points] Consider the function $T(x, y, z)=x^{2} y+y^{2} z-3 x z$.
a) [8 pts] Evaluate the gradient vector of $T$ at the point $P=(1,2,-1)$.
b) [ 4 pts$]$ Find the maximal rate of increase of $T$ at the point $P$.
c) [4 pts] Find the directional derivative of $T$ at the point $P$ in the direction of $\mathbf{v}=\langle 1,1,1\rangle$.
2. [14 points] Consider the function $f(x, y)=x^{3}+y^{2}-6 x y$.
a) [7 pts] Find all critical points of $f$.
b) [ 7 pts$]$ Classify all critical points as either a local maximum, local minimum or saddle point.
3. [14 points] Consider the following impossible integral

$$
\int_{0}^{1} \int_{x^{2}}^{1} \frac{x y}{1+y^{3}} d y d x
$$

a) [4 pts] Draw a clear picture of $D$ (the region of integration in the $x y$ plane), labeling all functions
b) [4 pts] Re-write the integral in terms of $d x d y$ instead of $d y d x$.
c) [ 6 pts$]$ Evaluate the integral from part (b).

