MATH 409 - MIDTERM 2 - SOLUTIONS

1. Option 1: The Limsup Product Rule

There is a subsequence $\left(t_{n_{k}}\right)$ of t_{n} that converges to $t=: \lim \sup _{n \rightarrow \infty} t_{n}$

But then $\left(s_{n_{k}} t_{n_{k}}\right)$ is a subsequence of $\left(s_{n} t_{n}\right)$ that converges to $s t$.

Since $\lim \sup _{n \rightarrow \infty} s_{n} t_{n}$ is the largest limit point of $s_{n} t_{n}$, we have

$$
\limsup _{n \rightarrow \infty} s_{n} t_{n} \geq s t=\left(\limsup _{n \rightarrow \infty} s_{n}\right)\left(\limsup _{n \rightarrow \infty} t_{n}\right)
$$

On the other hand, $\frac{1}{s_{n}} \rightarrow \frac{1}{s}>0$, so by the result above, we have

$$
\begin{gathered}
\limsup _{n \rightarrow \infty} t_{n}=\limsup _{n \rightarrow \infty}\left(\frac{1}{s_{n}}\right) s_{n} t_{n} \geq\left(\limsup _{n \rightarrow \infty} \frac{1}{s_{n}}\right)\left(\limsup _{n \rightarrow \infty} s_{n} t_{n}\right)=\frac{1}{s} \limsup _{n \rightarrow \infty} s_{n} t_{n} \\
\text { Hence } \limsup _{n \rightarrow \infty} s_{n} t_{n} \leq s \limsup _{n \rightarrow \infty} t_{n}=\left(\limsup _{n \rightarrow \infty} s_{n}\right)\left(\limsup _{n \rightarrow \infty} t_{n}\right)
\end{gathered}
$$

Combining the two results, we get

$$
\limsup _{n \rightarrow \infty} s_{n} t_{n}=\left(\limsup _{n \rightarrow \infty} s_{n}\right)\left(\limsup _{n \rightarrow \infty} t_{n}\right)
$$

Option 2: Continuous functions are bounded

Suppose not, then for all $n \in \mathbb{N}$ there is $x_{n} \in[a, b]$ such that $f\left(x_{n}\right) \geq n$.

But since x_{n} is bounded, by the Bolzano Weierstrass Theorem, there is a subsequence $\left(x_{n_{k}}\right)$ that converges to some $x_{0} \in[a, b]$

Since $x_{n_{k}} \rightarrow x_{0}$ and f is continuous, then $f\left(x_{n_{k}}\right) \rightarrow f\left(x_{0}\right)$ and so $\left|f\left(x_{n_{k}}\right)\right| \rightarrow\left|f\left(x_{0}\right)\right|$

On the other hand $\left|f\left(x_{n}\right)\right| \geq n$ for all n, and so $\left|f\left(x_{n_{k}}\right)\right| \geq n_{k}$ for all k, and letting k go to infinity we get $\left|f\left(x_{n_{k}}\right)\right| \rightarrow \infty$.

But then, comparing limits, we get $\left|f\left(x_{0}\right)\right|=\infty$, which is a contradiction $\Rightarrow \Leftarrow$
2. (a) For all $\epsilon>0$ there is $\delta>0$ such that for all x, if $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$
(b) STEP 1: Scratchwork

$$
\left|f(x)-f\left(x_{0}\right)\right|=\left|3 x^{2}-5-\left(3\left(x_{0}\right)^{2}-5\right)\right|=\left|3 x^{2}-3\left(x_{0}\right)^{2}\right|=3\left|x-x_{0}\right|\left|x+x_{0}\right|
$$

Now if $\left|x-x_{0}\right|<1$, then

$$
\left|x+x_{0}\right|=\left|x-x_{0}+x_{0}+x_{0}\right|=\left|x-x_{0}+2 x_{0}\right| \leq\left|x-x_{0}\right|+2\left|x_{0}\right|=1+2\left|x_{0}\right|
$$

And therefore

$$
\left|f(x)-f\left(x_{0}\right)\right|=3\left|x-x_{0}\right|\left|x+x_{0}\right| \leq 3\left|x-x_{0}\right|\left(1+2\left|x_{0}\right|\right)=3\left(1+2\left|x_{0}\right|\right)\left|x-x_{0}\right|<\epsilon
$$

Which gives $\left|x-x_{0}\right|=\frac{\epsilon}{3\left(1+2\left|x_{0}\right|\right)}$

STEP 2: Actual Proof

Let $\epsilon>0$ be given, let $\delta=\frac{\epsilon}{3\left(1+2\left|x_{0}\right|\right)}$, then if $\left|x-x_{0}\right|<\delta$, then $\left|x+x_{0}\right| \leq 1+2\left|x_{0}\right|$, so

$$
\begin{aligned}
\left|f(x)-f\left(x_{0}\right)\right|=3\left|x-x_{0}\right|\left|x+x_{0}\right| & \leq 3\left(1+2\left|x_{0}\right|\right)\left|x-x_{0}\right| \\
& <3\left(1+2\left|x_{0}\right|\right)\left(\frac{\epsilon}{3\left(1+2\left|x_{0}\right|\right)}\right)=\epsilon
\end{aligned}
$$

Hence f is continuous at x_{0}
3. (a) $\sum a_{n}$ converges if and only if for all $\epsilon>0$ there is N such that for all m, n, if $n \geq m>N$, then $\left|\sum_{k=m}^{n} a_{k}\right|<\epsilon$
(b) Let $\epsilon>0$ be given.

Since $\sum a_{n}$ converges, by the Divergence Test, $a_{n} \rightarrow 0$, so there is N_{1} such that if $n>N_{1}$, then $\left|a_{n}\right|<1$ that is, $a_{n}<1$

Since $\sum a_{n}$ converges, by the Cauchy criterion, there is N_{2} such that if $n \geq m>N_{2}$, then $\sum_{k=m}^{n} a_{k}<\epsilon$ (no absolute value since the terms are positive)

Let $N=\max \left\{N_{1}, N_{2}\right\}$, then if $n \geq m>N$, then

$$
\left|\sum_{k=m}^{n}\left(a_{k}\right)^{2}\right|=\sum_{k=m}^{n}\left(a_{k}\right)^{2} \leq \sum_{k=m}^{n} a_{k}<\epsilon
$$

Where in the second step we used $\left(a_{k}\right)^{2}<a_{k}$ since $a_{k}<1$
Hence by the Cauchy Criterion, $\sum\left(a_{n}\right)^{2}$ converges as well
(c) Let $a_{n}=\frac{(-1)^{n}}{\sqrt{n}}$, then $\sum a_{n}$ converges by the alternating series test, but $\sum\left(a_{n}\right)^{2}=\sum \frac{1}{n}$ diverges by the $1-$ series
(d) Let $a_{n}=\frac{1}{n}$, then $\sum a_{n}=\sum \frac{1}{n}$ diverges by the $1-$ series, but $\sum\left(a_{n}\right)^{2}=\sum \frac{1}{n^{2}}$ converges by the $2-$ series
4. We will construct a decreasing sequence $\left(s_{n}\right)$ with the property that for all n,

$$
\inf (S)<s_{n}<\inf (S)+\frac{1}{n}
$$

Then by the squeeze theorem $s_{n} \rightarrow \inf (S)$ and we would be done

Base Case: Consider $\inf (S)+1>\inf (S)$, so by definition of inf, there is some $s_{1} \in S$ with $s_{1}<\inf (S)+1$. On the other hand, since $\inf (S)$ is a lower bound for S, we get $s_{1} \geq \inf (S)$, and in fact $s_{1}>\inf (S)$ because otherwise $\inf (S)=s_{1} \in S$. Therefore $\inf (S)<s_{1}<\inf (S)+1 \checkmark$

Inductive Step: Suppose we found $s_{1}>s_{2}>\cdots>s_{n}$ with $\inf (S)<s_{k}<\inf (S)+\frac{1}{k}$ for all $k=1, \cdots, n$

Find $s_{n+1}<s_{n}$ such that $\inf (S)<s_{n+1}<\inf (S)+\frac{1}{n+1}$
Let $m=\min \left\{\inf (S)+\frac{1}{n+1}, s_{n}\right\}>\inf (S)$
Then by definition of $\inf (S)$ there is $s_{n+1} \in S$ such that $s_{n+1}<$ m, but this implies $s_{n+1}<s_{n}$ (so $\left(s_{n}\right)$ is decreasing) and $s_{n+1}<$ $\inf (S)+\frac{1}{n+1}$. Moreover, since $\inf (S)$ is a lower bound for S, we have $s_{n+1} \geq \inf (S)$, and in fact $s_{n+1}>\inf (S)$ because otherwise $\inf (S)=s_{n+1} \in S$. Therefore $\inf (S)<s_{n+1}<\inf (S)+\frac{1}{n+1} \checkmark$

