
MATH 409 − MIDTERM 2 − SOLUTIONS

1. Option 1: The Limsup Product Rule

There is a subsequence (tnk
) of tn that converges to t =: lim supn→∞ tn

But then (snk
tnk

) is a subsequence of (sntn) that converges to st.

Since lim supn→∞ sntn is the largest limit point of sntn, we have

lim sup
n→∞

sntn ≥ st =

(
lim sup
n→∞

sn

)(
lim sup
n→∞

tn

)
On the other hand, 1

sn
→ 1

s > 0, so by the result above, we have

lim sup
n→∞

tn = lim sup
n→∞

(
1

sn

)
sntn ≥

(
lim sup
n→∞

1

sn

)(
lim sup
n→∞

sntn

)
=

1

s
lim sup
n→∞

sntn

Hence lim sup
n→∞

sntn ≤ s lim sup
n→∞

tn =

(
lim sup
n→∞

sn

)(
lim sup
n→∞

tn

)
Combining the two results, we get

lim sup
n→∞

sntn =

(
lim sup
n→∞

sn

)(
lim sup
n→∞

tn

)
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Option 2: Continuous functions are bounded

Suppose not, then for all n ∈ N there is xn ∈ [a, b] such that
f(xn) ≥ n.

But since xn is bounded, by the Bolzano Weierstrass Theorem,
there is a subsequence (xnk

) that converges to some x0 ∈ [a, b]

Since xnk
→ x0 and f is continuous, then f(xnk

) → f(x0) and
so |f(xnk

)| → |f(x0)|

On the other hand |f(xn)| ≥ n for all n, and so |f(xnk
)| ≥ nk

for all k, and letting k go to infinity we get |f(xnk
)| → ∞.

But then, comparing limits, we get |f(x0)| = ∞, which is a
contradiction ⇒⇐
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2. (a) For all ϵ > 0 there is δ > 0 such that for all x, if |x− x0| < δ,
then |f(x)− f(x0)| < ϵ

(b) STEP 1: Scratchwork

|f(x)− f(x0)| =
∣∣∣3x2 − 5−

(
3 (x0)

2 − 5
)∣∣∣ = ∣∣∣3x2 − 3 (x0)

2
∣∣∣ = 3 |x− x0| |x+ x0|

Now if |x− x0| < 1, then

|x+ x0| = |x−x0 + x0 + x0| = |x− x0 + 2x0| ≤ |x− x0|+2 |x0| = 1+2 |x0|

And therefore

|f(x)− f(x0)| = 3 |x− x0| |x+ x0| ≤ 3 |x− x0| (1 + 2 |x0|) = 3 (1 + 2 |x0|) |x− x0| < ϵ

Which gives |x− x0| = ϵ
3(1+2|x0|)

STEP 2: Actual Proof

Let ϵ > 0 be given, let δ = ϵ
3(1+2|x0|) , then if |x− x0| < δ, then

|x+ x0| ≤ 1 + 2 |x0|, so

|f(x)− f(x0)| = 3 |x− x0| |x+ x0| ≤3 (1 + 2 |x0|) |x− x0|

<3 (1 + 2 |x0|)
(

ϵ

3 (1 + 2 |x0|)

)
= ϵ

Hence f is continuous at x0
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3. (a)
∑

an converges if and only if for all ϵ > 0 there is N such
that for all m,n, if n ≥ m > N , then |

∑n
k=m ak| < ϵ

(b) Let ϵ > 0 be given.

Since
∑

an converges, by the Divergence Test, an → 0, so there
is N1 such that if n > N1, then |an| < 1 that is, an < 1

Since
∑

an converges, by the Cauchy criterion, there is N2 such
that if n ≥ m > N2, then

∑n
k=m ak < ϵ (no absolute value since

the terms are positive)

Let N = max {N1, N2}, then if n ≥ m > N , then∣∣∣∣∣
n∑

k=m

(ak)
2

∣∣∣∣∣ =
n∑

k=m

(ak)
2 ≤

n∑
k=m

ak < ϵ

Where in the second step we used (ak)
2 < ak since ak < 1

Hence by the Cauchy Criterion,
∑

(an)
2 converges as well

(c) Let an = (−1)n√
n
, then

∑
an converges by the alternating series

test, but
∑

(an)
2 =

∑
1
n diverges by the 1−series

(d) Let an = 1
n , then

∑
an =

∑
1
n diverges by the 1−series, but∑

(an)
2 =

∑
1
n2 converges by the 2−series
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4. We will construct a decreasing sequence (sn) with the property
that for all n,

inf(S) < sn < inf(S) +
1

n

Then by the squeeze theorem sn → inf(S) and we would be done

Base Case: Consider inf(S) + 1 > inf(S), so by definition of
inf, there is some s1 ∈ S with s1 < inf(S) + 1. On the other
hand, since inf(S) is a lower bound for S, we get s1 ≥ inf(S),
and in fact s1 > inf(S) because otherwise inf(S) = s1 ∈ S.
Therefore inf(S) < s1 < inf(S) + 1 ✓

Inductive Step: Suppose we found s1 > s2 > · · · > sn with
inf(S) < sk < inf(S) + 1

k for all k = 1, · · · , n

Find sn+1 < sn such that inf(S) < sn+1 < inf(S) + 1
n+1

Let m = min
{
inf(S) + 1

n+1 , sn
}
> inf(S)

Then by definition of inf(S) there is sn+1 ∈ S such that sn+1 <
m, but this implies sn+1 < sn (so (sn) is decreasing) and sn+1 <
inf(S) + 1

n+1 . Moreover, since inf(S) is a lower bound for S, we
have sn+1 ≥ inf(S), and in fact sn+1 > inf(S) because otherwise
inf(S) = sn+1 ∈ S. Therefore inf(S) < sn+1 < inf(S) + 1

n+1 ✓


