1.

STEP 1: By definition of $\sup (S)=\infty$ with $M=1$, there is some $s_{1} \in S$ with $s_{1}>1 \checkmark$

STEP 2: Suppose we defined $s_{1}, \ldots s_{n}$ such that $s_{1}<s_{2}<$ $\cdots<s_{n}$ and with $s_{k}>k$ for all $k=1, \ldots, n$.

Let $M=\max \left\{s_{n}, n+1\right\}$

Then, by definition of $\sup (S)=\infty$, there is some $s_{n+1} \in S$ with $s_{n+1}>M=\max \left\{s_{n}, n+1\right\}$. Therefore, we have both $s_{n+1}>s_{n}$ and $s_{n+1}>n+1 \checkmark$

STEP 3: Therefore, by the inductive process, we have constructed an increasing sequence $\left(s_{n}\right)$ with $s_{n}>n$ for all n

STEP 1: Since $\alpha>1$, there is $\epsilon>0$ with $\alpha-\epsilon>1$. Now by definition

$$
\liminf _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}=\lim _{N \rightarrow \infty} \inf \left\{\left.\left|a_{n}\right|^{\frac{1}{n}} \right\rvert\, n>N\right\}=\alpha
$$

STEP 2: By definition of a limit, there is N_{1} such that if $N>N_{1}$, then

$$
\left|\inf \left\{\left.\left|a_{n}\right|^{\frac{1}{n}} \right\rvert\, n>N\right\}-\alpha\right|<\epsilon
$$

Since this is true for all $N>N_{1}$, this is true for some $N\left(>N_{1}\right)$. Therefore, in particular,

$$
\begin{aligned}
\inf \left\{\left.\left|a_{n}\right|^{\frac{1}{n}} \right\rvert\, n>N\right\}-\alpha>-\epsilon & \Rightarrow \inf \left\{\left.\left|a_{n}\right|^{\frac{1}{n}} \right\rvert\, n>N\right\}>\alpha-\epsilon \\
& \Rightarrow\left|a_{n}\right|^{\frac{1}{n}}>\alpha-\epsilon(\text { for all } n>N) \\
& \Rightarrow\left|a_{n}\right|>(\alpha-\epsilon)^{n} \\
& \Rightarrow a_{n}>(\alpha-\epsilon)^{n} \quad\left(\text { since } a_{n} \geq 0\right)
\end{aligned}
$$

STEP 3: However, since

$$
\sum_{n=N+1}^{\infty}(\alpha-\epsilon)^{n}=\infty
$$

(Geometric series with $r=\alpha-\epsilon>1$), by comparison we get that $\sum a_{n}=\infty$
3.
(a) $E^{\circ}=\emptyset$

Suppose $x \in E^{\circ}$, then for some $r>0,(x-r, x+r) \subseteq E$. But this is a contradiction because $(x-r, x+r)$ has some irrational numbers in it, whereas every element in E is rational $\Rightarrow \Leftarrow$
(b) $\bar{E}=E \cup\{2\}$

First of all, every $x \in E$ is in \bar{E} (by considering the constant sequence $s_{n}=x$). Moreover, the sequence $s_{n}=2-\frac{1}{n}$ is in E and converges to 2 , therefore $2 \in \bar{E}$. Since those are all the possible limit points of E, we get that $\bar{E}=E \cup\{2\}$
(c) $\partial E=E \cup\{2\}$

Using (a) and (b), we get

$$
\partial E=\bar{E} \backslash E^{\circ}=\bar{E} \backslash \emptyset=\bar{E}=E \cup\{2\}
$$

4.

STEP 1: Suppose $\bigcap_{n=1}^{\infty} F_{n}=\emptyset$, and consider

$$
\mathcal{U}=\left\{F_{1}^{c}, F_{2}^{c}, \ldots\right\}
$$

First of all, each F_{n} is closed, therefore each F_{n}^{c} is open.
Moreover \mathcal{U} covers S, because otherwise there would be some $s \in S$ that is in none of the F_{n}^{c}, so s must be in all the F_{n}, and so $s \in \bigcap_{n=1}^{\infty} F_{n}=\emptyset \Rightarrow \Leftrightarrow^{1}$

STEP 2: Since S is compact and \mathcal{U} covers S, there is a finite sub-cover \mathcal{V} of S, where

$$
\mathcal{V}=\left\{F_{n_{1}}^{c}, \ldots, F_{n_{N}}^{c}\right\}
$$

Let $M=\max \left\{n_{1}, \ldots, n_{N}\right\}$. Since the F_{n} are non-increasing, the F_{n}^{c} are non-decreasing (because $A \subseteq B \Rightarrow B^{c} \subseteq A^{c}$), and therefore, since \mathcal{V} covers S, we have

$$
S \subseteq \bigcup_{k=1}^{N} F_{n_{k}}^{c}=F_{M}^{c} \Rightarrow S \subseteq F_{M}^{c} \Rightarrow F_{M} \subseteq S^{c}=\emptyset
$$

But this implies that $F_{M}=\emptyset \Rightarrow \Leftarrow$

$$
\begin{aligned}
& { }^{1} \text { Or you can use } \\
& \qquad \bigcup_{n=1}^{\infty} F_{n}^{c}=\left(\bigcap_{n=1}^{\infty} F_{n}\right)^{c}=(\emptyset)^{c}=S
\end{aligned}
$$

