1.

STEP 1: By definition of $\sup(S) = \infty$ with M = 1, there is some $s_1 \in S$ with $s_1 > 1 \checkmark$

STEP 2: Suppose we defined $s_1, \ldots s_n$ such that $s_1 < s_2 < \cdots < s_n$ and with $s_k > k$ for all $k = 1, \ldots, n$.

Let $M = \max\{s_n, n+1\}$

Then, by definition of $\sup(S) = \infty$, there is some $s_{n+1} \in S$ with $s_{n+1} > M = \max\{s_n, n+1\}$. Therefore, we have both $s_{n+1} > s_n$ and $s_{n+1} > n+1 \checkmark$

STEP 3: Therefore, by the inductive process, we have constructed an increasing sequence (s_n) with $s_n > n$ for all n

STEP 1: Since $\alpha > 1$, there is $\epsilon > 0$ with $\alpha - \epsilon > 1$. Now by definition

$$\liminf_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{N \to \infty} \inf \left\{ |a_n|^{\frac{1}{n}} \mid n > N \right\} = \alpha$$

STEP 2: By definition of a limit, there is N_1 such that if $N > N_1$, then

$$\inf\left\{\left|a_{n}\right|^{\frac{1}{n}}\left|n>N\right\}-\alpha\right|<\epsilon$$

Since this is true for all $N > N_1$, this is true for some $N (> N_1)$. Therefore, in particular,

$$\inf \left\{ |a_n|^{\frac{1}{n}} \mid n > N \right\} - \alpha > -\epsilon \Rightarrow \inf \left\{ |a_n|^{\frac{1}{n}} \mid n > N \right\} > \alpha - \epsilon$$
$$\Rightarrow |a_n|^{\frac{1}{n}} > \alpha - \epsilon \text{ (for all } n > N)$$
$$\Rightarrow |a_n| > (\alpha - \epsilon)^n$$
$$\Rightarrow a_n > (\alpha - \epsilon)^n \text{ (since } a_n \ge 0)$$

STEP 3: However, since

$$\sum_{n=N+1}^{\infty} \left(\alpha - \epsilon\right)^n = \infty$$

(Geometric series with $r = \alpha - \epsilon > 1$), by comparison we get that $\sum a_n = \infty$

2

2.

3.

(a) $E^{\circ} = \emptyset$

Suppose $x \in E^{\circ}$, then for some r > 0, $(x - r, x + r) \subseteq E$. But this is a contradiction because (x - r, x + r) has some irrational numbers in it, whereas every element in E is rational $\Rightarrow \Leftarrow$

(b) $\overline{E} = E \cup \{2\}$

First of all, every $x \in E$ is in \overline{E} (by considering the constant sequence $s_n = x$). Moreover, the sequence $s_n = 2 - \frac{1}{n}$ is in E and converges to 2, therefore $2 \in \overline{E}$. Since those are all the possible limit points of E, we get that $\overline{E} = E \cup \{2\}$

(c) $\partial E = E \cup \{2\}$

Using (a) and (b), we get

$$\partial E = \overline{E} \setminus E^{\circ} = \overline{E} \setminus \emptyset = \overline{E} = E \cup \{2\}$$

STEP 1: Suppose $\bigcap_{n=1}^{\infty} F_n = \emptyset$, and consider

$$\mathcal{U} = \{F_1^c, F_2^c, \dots\}$$

First of all, each F_n is closed, therefore each F_n^c is open.

Moreover \mathcal{U} covers S, because otherwise there would be some $s \in S$ that is in none of the F_n^c , so s must be in all the F_n , and so $s \in \bigcap_{n=1}^{\infty} F_n = \emptyset \Rightarrow \Leftarrow^1$

STEP 2: Since S is compact and \mathcal{U} covers S, there is a finite sub-cover \mathcal{V} of S, where

$$\mathcal{V} = \left\{ F_{n_1}^c, \dots, F_{n_N}^c \right\}$$

Let $M = \max\{n_1, \ldots, n_N\}$. Since the F_n are non-increasing, the F_n^c are non-decreasing (because $A \subseteq B \Rightarrow B^c \subseteq A^c$), and therefore, since \mathcal{V} covers S, we have

$$S \subseteq \bigcup_{k=1}^{N} F_{n_{k}}^{c} = F_{M}^{c} \Rightarrow S \subseteq F_{M}^{c} \Rightarrow F_{M} \subseteq S^{c} = \emptyset$$

But this implies that $F_M = \emptyset \Rightarrow \Leftarrow$

¹Or you can use

$$\bigcup_{n=1}^{\infty} F_n^c = \left(\bigcap_{n=1}^{\infty} F_n\right)^c = (\emptyset)^c = S$$

4.

4