MATH 251 - MIDTERM 2

Name	
Student ID	
Section	501
Signature	

Instructions: Welcome to your Midterm! You have 50 minutes to take this exam, for a total of 50 points. No books, notes, calculators, or cellphones are allowed. Remember that you are not only graded on your final answer, but also on your work. **Please put your answers in the boxes provided.** If you need to continue your work on a scratch paper, please check the box "Work on Scratch Paper," or else your work will be discarded.

Academic Honesty Statement: With the signature above, I certify that the exam was taken by the person named and without any form of assistance and acknowledge that any form of cheating (no matter how small) results in an automatic F in the course, and will be further subject to disciplinary consequences, pursuant to the Aggie Honor Code.

Date: Friday, October 15, 2021.

1. (10 points) Find the equation of the tangent plane and the vector equation of the normal line to the following surface at (1, 1, 1)

$$x(z^{3}) - x(y^{2}) - yz + z^{2} = 0$$

Tangent Plane	
Normal line	

 \Box Work on Scratch Paper

2. (10 points) The volume of a Peyamagon is given by

$$V = \frac{\pi}{4} \left(r^2 \right) h \left(w^4 \right)$$

Suppose you're trying to measure the volume of a Peyamagon with r = 2, h = 4 and width w = 1, but your errors in measurement are dr = 0.1, dh = -0.2 and dw = -0.1

Approximate the error in finding the volume; express your answer in terms of π

|--|

3. (10 points) Find $\frac{\partial z}{\partial t}$ at s = 2 and t = 1, where

$$\begin{cases} z = x^3 + xy + y^4 \\ x = \frac{s}{t} \\ y = st \end{cases}$$

|--|

4. (10 points) Find the local maximum/minimum/saddle point values of f and the point(s) at which they occur. If they do not exist, write "DNE"

$$f(x,y) = x^4 - 4xy + y^4$$

Local maximum	at	
Local minimum	at	
Saddle Point	at	

5. (10 points) Use Lagrange multipliers to find the point(s) on the ellipse $x^2 + \left(\frac{y^2}{2}\right) = 4$ that are closest and furthest from (1,0)

Closest point(s)

Furthest point(s)