1. (10 points)

Suppose S is a nonempty subset of \mathbb{R} with $\sup (S)=\infty$ (this means that for all M, there is $s \in S$ with $s>M$)
Use an inductive construction to find an increasing sequence $\left(s_{n}\right)$ in S such that $s_{n}>n$ for all $n \in \mathbb{N}$
2. (10 points)

Show directly (without using lim sup or the ratio or root tests) that if $\left(a_{n}\right)$ is a sequence of non-negative real numbers with

$$
\liminf _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}=\alpha>1
$$

Then $\sum a_{n}=\infty$

Note: Start by letting $\epsilon>0$ be such that $\alpha-\epsilon>1$. Here you want the inf to be bigger than something.
3. $(10=4+4+2$ points $)$

Let E be the following subset of \mathbb{R} (with its usual metric):

$$
E=\left\{\left.2-\left(\frac{1}{n}\right) \right\rvert\, n \in \mathbb{N}\right\}
$$

Find the following, with justification:
(a) The interior E° of E
(b) The closure \bar{E} of E (the book uses E^{-})
(c) The boundary ∂E of E
4. (10 points)

Let (S, d) be a compact metric space (not necessarily in \mathbb{R} or \mathbb{R}^{k}) and let $F_{1} \supseteq F_{2} \supseteq F_{3} \supseteq \ldots$ be a non-increasing sequence of nonempty closed sets F_{n}
Show that the intersection $\bigcap_{n=1}^{\infty} F_{n}$ is nonempty.

Hint: Suppose $\bigcap_{n=1}^{\infty} F_{n}=\emptyset$ and consider the open cover

$$
\mathcal{U}=\left\{F_{1}^{c}, F_{2}^{c}, \ldots\right\}
$$

What set does \mathcal{U} cover? (Here F_{n}^{c} is the complement of F_{n} in S. Notice that $F_{1}^{c} \subseteq F_{2}^{c} \subseteq \ldots$)

