MIDTERM 3 - REVIEW

1. Spherical Coordinates

STEP 1: Picture

STEP 2: Inequalities

Date: Tuesday, November 9, 2021.

$$\begin{cases} 0 \le \rho \le 2\\ 0 \le \theta \le \frac{\pi}{2}\\ 0 \le \phi \le \frac{\pi}{2} \end{cases}$$

STEP 3: Integrate

Function: $f(x, y, z) = x^2 + y^2 = r^2 = (\rho \sin(\phi))^2 = \rho^2 \sin^2(\phi)$

$$\iiint_E x^2 + y^2 \, dx \, dy \, dz$$
$$= \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \rho^2 \sin^2(\phi) \rho^2 \sin(\phi) \, d\rho \, d\theta \, d\phi$$
$$= \left(\frac{\pi}{2}\right) \left(\int_0^2 \rho^4 \, d\rho\right) \left(\int_0^{\frac{\pi}{2}} \sin^3(\phi) \, d\phi\right)$$

$$\int_0^2 \rho^4 d\rho = \left[\frac{\rho^5}{5}\right]_0^2 = \frac{2^5}{5} = \frac{32}{5}$$

$$\int_0^{\frac{\pi}{2}} \sin^3(\phi) d\phi$$
$$= \int_0^{\frac{\pi}{2}} \sin^2(\phi) \sin(\phi) d\phi$$
$$= \int_0^{\frac{\pi}{2}} \left(1 - \cos^2(\phi)\right) \sin(\phi) d\phi$$

$$(u = \cos(\phi), du = -\sin(\phi)d\phi \Rightarrow \sin(\phi) = -du,$$

$$u(0) = \cos(0) = 1, u\left(\frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right) = 0)$$

$$= \int_{1}^{0} (1 - u^{2}) (-du)$$

$$= \int_{0}^{1} 1 - u^{2}du$$

$$= \left[u - \frac{u^{3}}{3}\right]_{0}^{1}$$

$$= \left(1 - \frac{1}{3}\right)$$

$$= \frac{2}{3}$$

Answer:
$$\frac{\pi}{2} \times \frac{32}{5} \times \frac{2}{3} = \frac{32\pi}{15}$$

2. INTEGRAL OVER SIMS

 ${\bf Video:}\ {\rm Integral}\ {\rm over}\ {\rm SIMS}$

Example 2:

Find the volume of the region E enclosed by the surfaces

$$z = \sqrt{x^2 + y^2}$$
 and $z = 6 - 2\sqrt{x^2 + y^2}$

STEP 1: Picture

STEP 2: Inequalities:

$$\begin{array}{ll} \text{Small} & \leq z \leq & \text{Big} \\ r \leq z \leq 6 - 2r \end{array}$$

STEP 3: Find *D***:** Intersection:

$$r = 6 - 2r$$
$$3r = 6$$
$$r = 2$$

Hence D is a disk of radius 2, so

$$\begin{cases} 0 \le r \le 2\\ 0 \le \theta \le 2\pi\\ r \le z \le 6 - 2r \end{cases}$$

STEP 3: Integrate:

4

$$Vol(E) = \iiint_{E} 1 \, dx \, dy \, dz$$

= $\int_{0}^{2\pi} \int_{0}^{2} \int_{r}^{6-2r} r \, dz \, dr \, d\theta$
= $2\pi \int_{0}^{2} r \, (6 - 2r - r) \, dr$
= $2\pi \int_{0}^{2} 6r - 3r^{2} dr$
= $2\pi \left[3r^{2} - r^{3} \right]_{0}^{2}$
= $2\pi \left(3(2)^{2} - 2^{3} \right)$
= $2\pi (12 - 8)$
= $2\pi (4)$
= 8π

3. The Jacobian

Video: Change of Variables

Example 3:

Use the following change of variables to calculate

$$\iint\limits_{D} x^2 + xy + y^2 dxdy$$

Where D is the region enclosed by the ellipse $x^2 + xy + y^2 = 3$

STEP 1: (here will be given)

$$\begin{cases} x = u + v\sqrt{3} \\ y = u - v\sqrt{3} \end{cases}$$

STEP 2: Endpoints

Let's see what happens to D:

$$x^{2} + xy + y^{2} = 3$$

$$\left(u + v\sqrt{3}\right)^{2} + \left(u + v\sqrt{3}\right)\left(u - v\sqrt{3}\right) + \left(u - v\sqrt{3}\right)^{2} = 3$$

$$u^{2} + 2uv\sqrt{3} + 3v^{2} + u^{2} - 2uv\sqrt{3} + 3v^{2} + u^{2} - 3v^{2} = 3$$

$$3u^{2} + 3v^{2} = 3$$

$$u^{2} + v^{2} = 1$$

So D becomes a disk D' of radius 1

$$\begin{cases} 0 \leq r \leq 1 \\ 0 \leq \theta \leq 2\pi \end{cases}$$

STEP 3: Jacobian:

$$dxdy = \left|\frac{dxdy}{dudv}\right| dudv = \left|-2\sqrt{3}\right| dudv = 2\sqrt{3}dudv$$

$$\frac{dxdy}{dudv} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 1 & \sqrt{3} \\ 1 & -\sqrt{3} \end{vmatrix} = -\sqrt{3} - \sqrt{3} = -2\sqrt{3}$$

STEP 4: Integrate:

$$f(x,y) = x^{2} + xy + y^{2} = 3u^{2} + 3v^{2}$$

$$\iint_{D} x^{2} + xy + y^{2} dxdy$$

$$= \iint_{D'} (3u^{2} + 3v^{2}) 2\sqrt{3} dudv$$

$$= 2\sqrt{3} \int_{0}^{2\pi} \int_{0}^{1} 3r^{2}r drd\theta$$

$$= 2\sqrt{3}(2\pi)3 \int_{0}^{1} r^{3} dr$$

$$= 12\sqrt{3} \left(\frac{1}{4}\right) \pi$$

$$= 3\sqrt{3}\pi$$

4. TRIPLE INTEGRALS

Example 4:

Set up, but do **not** evaluate the following triple integral. Write it in the usual form with dzdydx.

$$\iiint_E \sin(y) \, dx dy dz$$

Here E is the solid in the first octant bounded by the surfaces $z = 1 - x^2$ and y = 1 - x.

STEP 1: Picture

Here $z = 1 - x^2$ is a cylinder in the *y*-direction and y = 1 - x is a plane/cylinder in the *z*-direction

Note: Usually it's totally fine to do this in the y-direction, but here we specify dzdydx, which means you have to do z first.

STEP 2: Inequalities

Small
$$\leq z \leq$$
 Big
 $0 \leq z \leq 1 - x^2$

Find D:

 $\begin{array}{l} 0 \leq y \leq 1 - x \\ 0 \leq x \leq 1 \end{array}$

Therefore our inequalities are:

$$\begin{cases} 0 \le z \le 1 - x^2 \\ 0 \le y \le 1 - x \\ 0 \le x \le 1 \end{cases}$$

STEP 3: Answer:

$$\iiint_E \sin(y) \, dx \, dy \, dz = \int_0^1 \int_0^{1-x} \int_0^{1-x^2} \sin(y) \, dz \, dy \, dx$$