MIDTERM 3 - REVIEW

1. Spherical Coordinates

Example 1:

$$
\iiint_{E} x^{2}+y^{2} d x d y d z
$$

E is the ball of radius 2 in the first octant

STEP 1: Picture

STEP 2: Inequalities

Date: Tuesday, November 9, 2021.

$$
\left\{\begin{array}{l}
0 \leq \rho \leq 2 \\
0 \leq \theta \leq \frac{\pi}{2} \\
0 \leq \phi \leq \frac{\pi}{2}
\end{array}\right.
$$

STEP 3: Integrate
Function: $f(x, y, z)=x^{2}+y^{2}=r^{2}=(\rho \sin (\phi))^{2}=\rho^{2} \sin ^{2}(\phi)$

$$
\begin{aligned}
& \iiint_{E} x^{2}+y^{2} d x d y d z \\
= & \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \rho^{2} \sin ^{2}(\phi) \rho^{2} \sin (\phi) d \rho d \theta d \phi \\
= & \left(\frac{\pi}{2}\right)\left(\int_{0}^{2} \rho^{4} d \rho\right)\left(\int_{0}^{\frac{\pi}{2}} \sin ^{3}(\phi) d \phi\right) \\
& \int_{0}^{2} \rho^{4} d \rho=\left[\frac{\rho^{5}}{5}\right]_{0}^{2}=\frac{2^{5}}{5}=\frac{32}{5} \\
& \int_{0}^{\frac{\pi}{2}} \sin ^{3}(\phi) d \phi \\
= & \int_{0}^{\frac{\pi}{2}} \sin ^{2}(\phi) \sin (\phi) d \phi \\
\frac{\pi}{2} & \left.1-\cos ^{2}(\phi)\right) \sin (\phi) d \phi
\end{aligned}
$$

$$
\begin{aligned}
& (u=\cos (\phi), d u=-\sin (\phi) d \phi \Rightarrow \sin (\phi)=-d u, \\
& \left.u(0)=\cos (0)=1, u\left(\frac{\pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)=0\right) \\
= & \int_{1}^{0}\left(1-u^{2}\right)(-d u) \\
= & \int_{0}^{1} 1-u^{2} d u \\
= & {\left[u-\frac{u^{3}}{3}\right]_{0}^{1} } \\
= & \left(1-\frac{1}{3}\right) \\
= & \frac{2}{3}
\end{aligned}
$$

$$
\text { Answer: } \frac{\pi}{2} \times \frac{32}{5} \times \frac{2}{3}=\frac{32 \pi}{15}
$$

2. Integral over SIMS

Video: Integral over SIMS

Example 2:

Find the volume of the region E enclosed by the surfaces

$$
z=\sqrt{x^{2}+y^{2}} \text { and } z=6-2 \sqrt{x^{2}+y^{2}}
$$

STEP 1: Picture

STEP 2: Inequalities:

$$
\begin{aligned}
\text { Small } & \leq z \leq \operatorname{Big} \\
r & \leq z \leq 6-2 r
\end{aligned}
$$

STEP 3: Find D : Intersection:

$$
\begin{aligned}
r & =6-2 r \\
3 r & =6 \\
r & =2
\end{aligned}
$$

Hence D is a disk of radius 2 , so

$$
\left\{\begin{array}{r}
0 \leq r \leq 2 \\
0 \leq \theta \leq 2 \pi \\
r \leq z \leq 6-2 r
\end{array}\right.
$$

STEP 3: Integrate:

$$
\begin{aligned}
\operatorname{Vol}(E) & =\iiint_{E} 1 d x d y d z \\
& =\int_{0}^{2 \pi} \int_{0}^{2} \int_{r}^{6-2 r} r d z d r d \theta \\
& =2 \pi \int_{0}^{2} r(6-2 r-r) d r \\
& =2 \pi \int_{0}^{2} 6 r-3 r^{2} d r \\
& =2 \pi\left[3 r^{2}-r^{3}\right]_{0}^{2} \\
& =2 \pi\left(3(2)^{2}-2^{3}\right) \\
& =2 \pi(12-8) \\
& =2 \pi(4) \\
& =8 \pi
\end{aligned}
$$

3. The Jacobian

Video: Change of Variables

Example 3:

Use the following change of variables to calculate

$$
\iint_{D} x^{2}+x y+y^{2} d x d y
$$

Where D is the region enclosed by the ellipse $x^{2}+x y+y^{2}=3$
STEP 1: (here will be given)

$$
\left\{\begin{array}{l}
x=u+v \sqrt{3} \\
y=u-v \sqrt{3}
\end{array}\right.
$$

STEP 2: Endpoints

Let's see what happens to D :

$$
\begin{aligned}
x^{2}+x y+y^{2} & =3 \\
(u+v \sqrt{3})^{2}+(u+v \sqrt{3})(u-v \sqrt{3})+(u-v \sqrt{3})^{2} & =3 \\
u^{2}+2 u v \sqrt{3}+3 v^{2}+u^{2}-2 u v \sqrt{3}+3 v^{2}+u^{2}-3 v^{2} & =3 \\
3 u^{2}+3 v^{2} & =3 \\
u^{2}+v^{2} & =1
\end{aligned}
$$

So D becomes a disk D^{\prime} of radius 1

$$
\left\{\begin{array}{l}
0 \leq r \leq 1 \\
0 \leq \theta \leq 2 \pi
\end{array}\right.
$$

STEP 3: Jacobian:

$$
\begin{gathered}
d x d y=\left|\frac{d x d y}{d u d v}\right| d u d v=|-2 \sqrt{3}| d u d v=2 \sqrt{3} d u d v \\
\frac{d x d y}{d u d v}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
1 & \sqrt{3} \\
1 & -\sqrt{3}
\end{array}\right|=-\sqrt{3}-\sqrt{3}=-2 \sqrt{3}
\end{gathered}
$$

STEP 4: Integrate:

$$
\begin{aligned}
f(x, y)= & x^{2}+x y+y^{2}=3 u^{2}+3 v^{2} \\
& \iint_{D} x^{2}+x y+y^{2} d x d y \\
= & \iint_{D^{\prime}}\left(3 u^{2}+3 v^{2}\right) 2 \sqrt{3} d u d v \\
= & 2 \sqrt{3} \int_{0}^{2 \pi} \int_{0}^{1} 3 r^{2} r d r d \theta \\
= & 2 \sqrt{3}(2 \pi) 3 \int_{0}^{1} r^{3} d r \\
= & 12 \sqrt{3}\left(\frac{1}{4}\right) \pi \\
= & 3 \sqrt{3} \pi
\end{aligned}
$$

4. Triple Integrals

Example 4:

Set up, but do not evaluate the following triple integral. Write it in the usual form with $d z d y d x$.

$$
\iiint_{E} \sin (y) d x d y d z
$$

Here E is the solid in the first octant bounded by the surfaces $z=1-x^{2}$ and $y=1-x$.

STEP 1: Picture

Here $z=1-x^{2}$ is a cylinder in the y-direction and $y=1-x$ is a plane/cylinder in the z-direction

Note: Usually it's totally fine to do this in the y-direction, but here we specify $d z d y d x$, which means you have to do z first.

STEP 2: Inequalities

$$
\begin{gathered}
\text { Small } \leq z \leq \operatorname{Big} \\
0 \leq z \leq 1-x^{2}
\end{gathered}
$$

Find D :

$$
\begin{aligned}
& 0 \leq y \leq 1-x \\
& 0 \leq x \leq 1
\end{aligned}
$$

Therefore our inequalities are:

$$
\left\{\begin{array}{l}
0 \leq z \leq 1-x^{2} \\
0 \leq y \leq 1-x \\
0 \leq x \leq 1
\end{array}\right.
$$

STEP 3: Answer:

$$
\iiint_{E} \sin (y) d x d y d z=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x^{2}} \sin (y) d z d y d x
$$

