MAT 267, Spring 2021, Test 3, Instructor: Peyam Tabrizian

Part I: Multiple Choice. Select the correct answer for each problem and make a table of the answers at the top of your first page for the exam. There are 7 problems, each worth 8 points, for a total of 56 possible points.

1. Evaluate the triple integral $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} 8 x y z d x d y d z$.
A. 10
B. 18
C. 24
D. 36
E. none of the above
2. Let E be the portion of the unit ball in the first octant and let $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$. Then $\iiint_{E} f(x, y, z) d V$ in spherical coordinates is
A. $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{1} \rho d \rho d \phi d \theta$
B. $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{1} \rho^{3} \sin \phi d \rho d \phi d \theta$
C. $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{1} \rho^{2} \sin ^{2} \phi d \rho d \phi d \theta$
D. $\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} \rho \sin \phi d \rho d \phi d \theta$
E. none of the above
3. Let E be the cylinder with height h whose base is a disk of radius R in the $x y$-plane centered at the origin. If E has density $f(x, y, z)=x^{2}+y^{2}+z^{2}$, then what is the total mass of E, in terms of integrals?
A. $\int_{0}^{2 \pi} \int_{-R}^{R} \int_{0}^{h}\left(r^{2}+z^{2}\right) d z d r d \theta$
B. $\int_{0}^{2 \pi} \int_{0}^{R} \int_{0}^{h} r^{3} d z d r d \theta$
C. $\int_{0}^{2 \pi} \int_{0}^{R} \int_{0}^{h}\left(r^{3}+r z^{2}\right) d z d r d \theta$
D. $\int_{0}^{2 \pi} \int_{0}^{R} \int_{0}^{h} r d z d r d \theta$
E. none of the above
4. Only one of the following vector fields is conservative. Which is it?
A. $\mathbf{F}(x, y)=\left\langle-y^{2}, x\right\rangle$
B. $\mathbf{F}(x, y)=\left\langle x^{3} y, x y^{3}+1\right\rangle$
C. $\mathbf{F}(x, y)=\langle 2 y+1,3\rangle$
D. $\mathbf{F}(x, y)=\langle x-4 y, y-4 x\rangle$
E. none of the above
5. Let C be the (curved) portion of the circle $x^{2}+y^{2}=$ 9 in the first quadrant with counterclockwise orientation. Then $\int_{C} x d s$ is
A. 3
B. -9
C. 9
D. 0
E. none of the above
6. Let C be the unit circle with positive orientation and $\mathbf{F}(x, y)=\left\langle-2 y^{3}, 2 x^{3}\right\rangle$. Using Green's Theorem, calculate the value of $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
A. 2π
B. $\frac{3 \pi}{2}$
C. 3π
D. 0
E. none of the above
7. Which of the following is a potential function (antiderivative) for the conservative vector field $\mathbf{F}(x, y, z)=\langle 2 x, 4 y, 8 z\rangle ?$
A. $f(x, y, z)=x^{2}+y^{2}+z^{2}$
B. $f(x, y, z)=2 x^{2}+4 y^{2}+8 z^{2}$
C. $f(x, y, z)=2 x+4 y+8 z$
D. $f(x, y, z)=x^{2}+2 y^{2}+4 z^{2}$
E. none of the above

Part II: Free Response. Solve each problem and show all work clearly. Draw a box around your final answers and include units where applicable. Give exact answers to all questions; do not state the answers as decimal approximations. There are 3 problems worth a total of 44 points.

1. [14 points] Use a triple integral in cylindrical coordinates to find the volume of the solid region E bounded by the cones $z=6-2 \sqrt{x^{2}+y^{2}}$ and $z=\sqrt{x^{2}+y^{2}}$. Make sure to draw a picture of E, labeling the two functions. You have to draw a picture and use triple integrals here.
2. [14 points] Find the work done of the force field $\mathbf{F}(x, y, z)=\langle-3 y, 3 x, 2 z\rangle$ on an object that moves along the trajectory $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ from the point $(0,0,0)$ to the point $(2,4,8)$
3. [16 points] Define the vector field $\mathbf{F}(x, y)=\left\langle 4 x+3 e^{y}, 3 x e^{y}+3 y^{2}\right\rangle$.
a) [3 pts] Check that \mathbf{F} is a conservative vector field.
b) $[10 \mathrm{pts}]$ Find a potential function (antiderivative) for \mathbf{F}.
c) $[3 \mathrm{pts}]$ Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is any curve from $(3,0)$ to $(1,2)$. Simplify your answer.
