MIDTERM REVIEW

1. Uniform Convergence

Problem 1: Let $f_{n}(x)=\left(x-\frac{1}{n}\right)^{2}$ on $[0,1]$. Show that f_{n} converges uniformly to some function f on $[0,1]$.

STEP 1: Find f

For all x we have

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty}\left(x-\frac{1}{n}\right)^{2} \stackrel{\mathrm{CONT}}{=}\left(\lim _{n \rightarrow \infty}\left(x-\frac{1}{n}\right)\right)^{2}=x^{2}
$$

Therefore $f(x)=x^{2}$

STEP 2: Uniform Convergence:

$$
\begin{aligned}
\left|f_{n}(x)-f(x)\right| & =\left|\left(x-\frac{1}{n}\right)^{2}-x^{2}\right| \\
& =\left|x^{2}-\frac{2 x}{n}+\frac{1}{n^{2}}-x^{2}\right| \\
& =\left|-\frac{2 x}{n}+\frac{1}{n^{2}}\right| \\
& \leq \frac{2|x|}{n}+\frac{1}{n^{2}} \\
& \leq \frac{2}{n}+\frac{1}{n^{2}} \quad \text { Since } 0 \leq x \leq 1
\end{aligned}
$$

[^0]Let $\epsilon>0$ be given, then since $\lim _{n \rightarrow \infty} \frac{2}{n}+\frac{1}{n^{2}}=0$ there is N such that if $n>N$ then $\left|\frac{2}{n}+\frac{1}{n^{2}}\right|<\epsilon$.

With that N, if $n>N$ then by the above, for all x, we have

$$
\left|f_{n}(x)-f(x)\right| \leq \frac{2}{n}+\frac{1}{n^{2}}<\epsilon
$$

Hence f_{n} converges uniformly to f on $[0,1]$

2. Equicontinuity And Arzelì-Ascoli

Problem 2: Let $f_{n}:[a, b] \rightarrow \mathbb{R}$ be a sequence of smooth functions such that $\left(f_{n}^{\prime}\right)$ is bounded. Moreover, suppose for some $x_{0},\left(f_{n}\left(x_{0}\right)\right)$ is a bounded sequence. Show that $\left(f_{n}\right)$ has a subsequence which converges uniformly on $[a, b]$.

We would like to apply Arzelá-Ascoli Theorem, so we need to show that $\left(f_{n}\right)$ is bounded and equicontinuous.

STEP 1: Equicontinuous ${ }^{11}$

Let $M=\sup _{x}\left|f_{n}^{\prime}(x)\right|$ and let $\epsilon>0$ be given and let $\delta=\frac{\epsilon}{M}$, then if $|x-y|<\delta$ then by the Mean-Value Theorem (c is between x and y)

$$
\left|f_{n}(x)-f_{n}(y)\right|=\left|f_{n}^{\prime}(c)\right||x-y| \leq M|x-y|<M\left(\frac{\epsilon}{M}\right)=\epsilon \checkmark
$$

STEP 2: Uniformly Bounded

Let $C=\sup _{n}\left|f_{n}\left(x_{0}\right)\right|$ then for all x, we have

[^1]\[

$$
\begin{aligned}
\left|f_{n}(x)\right| & =\left|f_{n}(x)-f_{n}\left(x_{0}\right)+f_{n}\left(x_{0}\right)\right| \\
& \leq\left|f_{n}(x)-f_{n}\left(x_{0}\right)\right|+\left|f_{n}\left(x_{0}\right)\right| \\
& \leq\left|f_{n}(c)\right|\left|x-x_{0}\right|+C \\
& \leq M(b-a)+C \checkmark
\end{aligned}
$$
\]

STEP 3: Therefore, by the Arzelà-Ascoli Theorem, $\left(f_{n}\right)$ has a subsequence which converges uniformly on $[a, b]$

3. Power SERIES

Problem 3: Show that $\sum_{n=1}^{\infty} \frac{x^{n}}{1+x^{n}}$ converges uniformly on $[0, a]$ for each $0<a<1$ but not uniformly on $[0,1)$

$$
\left|\frac{x^{n}}{1+x^{n}}\right|=\frac{x^{n}}{1+x^{n}} \leq x^{n} \leq \underbrace{a^{n}}_{M_{n}}
$$

But since $\sum_{n=1}^{\infty} a^{n}$ converges since $|a|<1$ (Geometric series), by the Weierstraß M-test, the series converges.

If the series converged uniformly on $[0,1)$, it would be uniformly Cauchy, so with $\epsilon=\frac{1}{4}$ there is N such that if $n \geq m \geq N$ then for all $x \in[0,1)$

$$
\sum_{k=m}^{n} \frac{x^{k}}{1+x^{k}}<\frac{1}{4}
$$

In particular if you let $m=n=N$ then for all $x \in[0,1)$, we have

$$
\frac{x^{N}}{1+x^{N}}<\frac{1}{4}
$$

But this contradicts the fact that

$$
\lim _{x \rightarrow 1} \frac{x^{N}}{1+x^{N}}=\frac{1}{2}
$$

4. Fourier Series

Problem 4: Suppose f is periodic of period 2π and continuously differentiable (so f^{\prime} is continuous). Show that

$$
\begin{aligned}
& \lim _{n \rightarrow \pm \infty} n \hat{f}(n)=0 \\
& \widehat{f}^{\prime}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{\prime}(x) e^{-i n x} d x \\
&=\frac{1}{2 \pi}\left[f(x) e^{-i n x}\right]_{-\pi}^{\pi}-\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x)(-i n) e^{-i n x} d x \\
&=\frac{1}{2 \pi}\left(f(\pi) e^{-i n \pi}-f(-\pi) e^{i n \pi}\right)+\frac{i n}{2 \pi} \int-\pi^{\pi} f(x) e^{-i n x} d x \\
&=i n \hat{f}(n)
\end{aligned}
$$

(The terms in brackets cancel out by periodicity)
Therefore $\hat{f}^{\prime}(n)=i n \hat{f}(n)$
But since f^{\prime} is continuous on $[-\pi, \pi]$ it is bounded and integrable, and therefore by the Riemann-Lebesgue Lemma $\lim _{n \rightarrow \pm \infty} \widehat{f^{\prime}}(n)=0$ and so

$$
\lim _{n \rightarrow \pm \infty} n \hat{f}(n)=\frac{1}{i} \lim _{n \rightarrow \pm \infty} i n \hat{f}(n)=\frac{1}{i} \lim _{n \rightarrow \pm \infty} \widehat{f^{\prime}}(n)=0
$$

5. Fourier Transform

Problem 5: Suppose $f \in \mathcal{S}$ and for all x we have

$$
\int_{-\infty}^{\infty} f(y) e^{-y^{2}+2 x y} d y=0
$$

Show that $f=0$
Hint: Consider $f \star e^{-x^{2}}$
Using the hint, we calculate

$$
\begin{aligned}
f \star e^{-x^{2}} & =\int_{-\infty}^{\infty} f(y) e^{-(x-y)^{2}} d y \\
& =\int_{-\infty}^{\infty} f(y) e^{-x^{2}+2 x y-y^{2}} d y \\
& =e^{-x^{2}} \int_{-\infty}^{\infty} f(y) e^{2 x y-y^{2}} d y \\
& =0
\end{aligned}
$$

Hence $f \star e^{-x^{2}}=0$ and hence

$$
\begin{aligned}
\widehat{f \star e^{-x^{2}}} & =\hat{0} \\
\widehat{f} \widehat{e^{-x^{2}}} & =0 \\
\widehat{f} e^{-x^{2}} & =0 \\
\widehat{f} & =0
\end{aligned}
$$

And therefore $f=q^{2}$

[^2]
[^0]: Date: Monday, July 25, 2022.

[^1]: ${ }^{1}$ We have shown this in lecture, but we will need this idea in the next step

[^2]: ${ }^{2}$ This follows from the Fourier inversion formula $f(x)=\int_{-\infty}^{\infty} \hat{f}(\xi) e^{2 \pi i x \xi} d \xi$

