
MATH S4062 − MIDTERM − SOLUTIONS

1. Banach Fixed Point Theorem: If (X, d) is complete and f
is a contraction, then f has a unique fixed point p.

STEP 1: Let x0 ∈ X and define xn = fn(x0)

Notice d(x1, x2) = d(f(x0), f(x1)) ≤ kd(x0, x1) and

d(x2, x3) = d(f(x1), f(x2)) ≤ kd(x1, x2) ≤ kkd(x0, x1) = k2d(x0, x1)

More generally d(xn, xn+1) ≤ knd(x0, x1)

STEP 2: Claim: (xn) is Cauchy

Why? Let ε > 0 be given and N be TBA, then if m,n > N
(WLOG assume n ≥ m), then

d(xm, xn) ≤d(xm, xm+1) + d(xm+1, xm+2) + · · ·+ d(xn−1, xn)

≤kmd(x0, x1) + km+1d(x0, x1) + · · ·+ kn−1d(x1, x0) (By STEP 1)

≤
(
km + km+1 + · · ·+ kn−1

)
d(x1, x0)

=km
(
1 + k + · · ·+ kn−m−1

)
d(x0, x1)

≤km
(
1 + k + k2 + · · ·

)
d(x0, x1)

=km
(

1

1− k

)
d(x0, x1)

≤ kN

1− k
d(x0, x1) Since m > N and k < 1

But since k < 1 we have limn→∞ k
n = 0, so we can choose N

large enough so that kN

1−kd(x0, x1) < ε, which in turn implies
d(xm, xn) < ε
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STEP 3: Since (xn) is Cauchy and X is complete, (xn) con-
verges to some p

Claim: p is a fixed point of f .

This follows because

xn+1 =f(xn)

lim
n→∞

xn+1 = lim
n→∞

f(xn)

p =f
(

lim
n→∞

xn

)
(continuity)

p =f(p)X

STEP 4: Uniqueness: Suppose there are two fixed points
p 6= q, then

d(p, q) = d(f(p), f(q)) ≤ kd(p, q) < d(p, q)

Which is a contradiction �
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2. Suppose there are x 6= y with f(x) 6= f(y) and let ε = |f(x)− f(y)|

Since fn is equicontinuous on [−1, 1] there is δ > 0 such that if
|x0 − y0| < δ then for all n we have |fn(x0)− fn(y0)| < ε.

However, with x and y as above, then since limn→∞
x
n −

y
n = 0

there is n large enough so that
∣∣x
n −

y
n

∣∣ < δ, and both are in
[−1, 1], and therefore∣∣∣fn (x

n

)
− fn

(y
n

)∣∣∣ <ε∣∣∣f (n(x
n

))
− f

(
n
(y
n

))∣∣∣ <ε
|f(x)− f(y)| <ε
|f(x)− f(y)| < |f(x)− f(y)|

Which is a contradiction, and therefore f is constant.
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3. Notice that if x ≥ a then 1+
(
n2
)
x ≥

(
n2
)
x ≥ n2a and therefore

1

1 + (n2)x
≤ 1

n2a
=

1

a

(
1

n2

)
︸ ︷︷ ︸

Mn

Therefore, since

∞∑
n=1

Mn =
∞∑
n=1

1

a (n2)
=

1

a

∞∑
n=1

1

n2

Converges (it’s a 2−series), by the Weierstraß M-test, it follows
that

∞∑
n=1

1

1 + (n2)x
converges uniformly on [a,∞)

However, it does not converge uniformly on (0,∞) because if it
did, then it would be uniformly Cauchy, and so by the Cauchy
criterion for series, there would be N such that if with ε = 1

2
there is N such that if n ≥ m ≥ N then for all x > 0

n∑
k=m

1

1 + (n2)x
<

1

2

In particular if you let m = n = N then for all x > 0, we have

1

1 + (N 2)x
<

1

2

But this contradicts the fact that

lim
x→0

1

1 + (N 2)x
= 1
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4. Let ε > 0 be given, then since fn → f uniformly, there is N1

such that if n > N1 then for all y we have |fn(y)− f(y)| < ε
4M

Moreover, since limn→∞
∫
|y|>M |fn(y)− f(y)| dy = 0 there is N2

such that if n > N2 then
∫
|y|>M |fn(y)− f(y)| dy < ε

2

Let N = max {N1, N2} then if n > N then for all x we have∣∣∣f̂n(x)− f̂(x)
∣∣∣ =

∣∣∣∣∫ ∞
−∞

fn(y)e−2πixydy − f(y)e−2πixydy

∣∣∣∣
=

∣∣∣∣∫ ∞
−∞

(fn(y)− f(y)) e−2πixydy

∣∣∣∣
≤
∫ ∞
−∞
|fn(y)− f(y)|

∣∣e−2πixy∣∣︸ ︷︷ ︸
=1

dy

=

∫
|y|≤M

|fn(y)− f(y)|︸ ︷︷ ︸
< ε

4M

dy +

∫
|y|>M

|fn(y)− f(y)| dy︸ ︷︷ ︸
< ε

2

<
ε

4M

∫
|y|≤M

1dy +
ε

2

=
ε

4M
(2M) +

ε

2

=
ε

2
+
ε

2
=εX

Therefore f̂n → f̂ uniformly


