MATH S4062 - MIDTERM - SOLUTIONS

1. Banach Fixed Point Theorem: If (X, d) is complete and f is a contraction, then f has a unique fixed point p.

STEP 1: Let $x_{0} \in X$ and define $x_{n}=f^{n}\left(x_{0}\right)$

Notice $d\left(x_{1}, x_{2}\right)=d\left(f\left(x_{0}\right), f\left(x_{1}\right)\right) \leq k d\left(x_{0}, x_{1}\right)$ and
$d\left(x_{2}, x_{3}\right)=d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq k d\left(x_{1}, x_{2}\right) \leq k k d\left(x_{0}, x_{1}\right)=k^{2} d\left(x_{0}, x_{1}\right)$
More generally $d\left(x_{n}, x_{n+1}\right) \leq k^{n} d\left(x_{0}, x_{1}\right)$

STEP 2: Claim: $\left(x_{n}\right)$ is Cauchy
Why? Let $\epsilon>0$ be given and N be TBA, then if $m, n>N$ (WLOG assume $n \geq m$), then

$$
\begin{align*}
d\left(x_{m}, x_{n}\right) & \leq d\left(x_{m}, x_{m+1}\right)+d\left(x_{m+1}, x_{m+2}\right)+\cdots+d\left(x_{n-1}, x_{n}\right) \\
& \leq k^{m} d\left(x_{0}, x_{1}\right)+k^{m+1} d\left(x_{0}, x_{1}\right)+\cdots+k^{n-1} d\left(x_{1}, x_{0}\right) \tag{BySTEP1}\\
& \leq\left(k^{m}+k^{m+1}+\cdots+k^{n-1}\right) d\left(x_{1}, x_{0}\right) \\
& =k^{m}\left(1+k+\cdots+k^{n-m-1}\right) d\left(x_{0}, x_{1}\right) \\
& \leq k^{m}\left(1+k+k^{2}+\cdots\right) d\left(x_{0}, x_{1}\right) \\
& =k^{m}\left(\frac{1}{1-k}\right) d\left(x_{0}, x_{1}\right) \\
& \leq \frac{k^{N}}{1-k} d\left(x_{0}, x_{1}\right) \quad \text { Since } m>N \text { and } k<1
\end{align*}
$$

But since $k<1$ we have $\lim _{n \rightarrow \infty} k^{n}=0$, so we can choose N large enough so that $\frac{k^{N}}{1-k} d\left(x_{0}, x_{1}\right)<\epsilon$, which in turn implies $d\left(x_{m}, x_{n}\right)<\epsilon \checkmark$

STEP 3: Since $\left(x_{n}\right)$ is Cauchy and X is complete, $\left(x_{n}\right)$ converges to some p

Claim: p is a fixed point of f.

This follows because

$$
\begin{aligned}
x_{n+1} & =f\left(x_{n}\right) \\
\lim _{n \rightarrow \infty} x_{n+1} & =\lim _{n \rightarrow \infty} f\left(x_{n}\right) \\
p & =f\left(\lim _{n \rightarrow \infty} x_{n}\right) \quad \text { (continuity) } \\
p & =f(p) \checkmark
\end{aligned}
$$

STEP 4: Uniqueness: Suppose there are two fixed points $p \neq q$, then

$$
d(p, q)=d(f(p), f(q)) \leq k d(p, q)<d(p, q)
$$

Which is a contradiction
2. Suppose there are $x \neq y$ with $f(x) \neq f(y)$ and let $\epsilon=|f(x)-f(y)|$

Since f_{n} is equicontinuous on $[-1,1]$ there is $\delta>0$ such that if $\left|x_{0}-y_{0}\right|<\delta$ then for all n we have $\left|f_{n}\left(x_{0}\right)-f_{n}\left(y_{0}\right)\right|<\epsilon$.

However, with x and y as above, then since $\lim _{n \rightarrow \infty} \frac{x}{n}-\frac{y}{n}=0$ there is n large enough so that $\left|\frac{x}{n}-\frac{y}{n}\right|<\delta$, and both are in $[-1,1]$, and therefore

$$
\begin{aligned}
\left|f_{n}\left(\frac{x}{n}\right)-f_{n}\left(\frac{y}{n}\right)\right| & <\epsilon \\
\left|f\left(n\left(\frac{x}{n}\right)\right)-f\left(n\left(\frac{y}{n}\right)\right)\right| & <\epsilon \\
|f(x)-f(y)| & <\epsilon \\
|f(x)-f(y)| & <|f(x)-f(y)|
\end{aligned}
$$

Which is a contradiction, and therefore f is constant.
3. Notice that if $x \geq a$ then $1+\left(n^{2}\right) x \geq\left(n^{2}\right) x \geq n^{2} a$ and therefore

$$
\frac{1}{1+\left(n^{2}\right) x} \leq \frac{1}{n^{2} a}=\underbrace{\frac{1}{a}\left(\frac{1}{n^{2}}\right)}_{M_{n}}
$$

Therefore, since

$$
\sum_{n=1}^{\infty} M_{n}=\sum_{n=1}^{\infty} \frac{1}{a\left(n^{2}\right)}=\frac{1}{a} \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

Converges (it's a 2 -series), by the Weierstraß M-test, it follows that

$$
\sum_{n=1}^{\infty} \frac{1}{1+\left(n^{2}\right) x} \text { converges uniformly on }[a, \infty)
$$

However, it does not converge uniformly on $(0, \infty)$ because if it did, then it would be uniformly Cauchy, and so by the Cauchy criterion for series, there would be N such that if with $\epsilon=\frac{1}{2}$ there is N such that if $n \geq m \geq N$ then for all $x>0$

$$
\sum_{k=m}^{n} \frac{1}{1+\left(n^{2}\right) x}<\frac{1}{2}
$$

In particular if you let $m=n=N$ then for all $x>0$, we have

$$
\frac{1}{1+\left(N^{2}\right) x}<\frac{1}{2}
$$

But this contradicts the fact that

$$
\lim _{x \rightarrow 0} \frac{1}{1+\left(N^{2}\right) x}=1
$$

4. Let $\epsilon>0$ be given, then since $f_{n} \rightarrow f$ uniformly, there is N_{1} such that if $n>N_{1}$ then for all y we have $\left|f_{n}(y)-f(y)\right|<\frac{\epsilon}{4 M}$

Moreover, since $\lim _{n \rightarrow \infty} \int_{|y|>M}\left|f_{n}(y)-f(y)\right| d y=0$ there is N_{2} such that if $n>N_{2}$ then $\int_{|y|>M}\left|f_{n}(y)-f(y)\right| d y<\frac{\epsilon}{2}$

Let $N=\max \left\{N_{1}, N_{2}\right\}$ then if $n>N$ then for all x we have

$$
\begin{aligned}
\left|\widehat{f}_{n}(x)-\widehat{f}(x)\right| & =\left|\int_{-\infty}^{\infty} f_{n}(y) e^{-2 \pi i x y} d y-f(y) e^{-2 \pi i x y} d y\right| \\
& =\left|\int_{-\infty}^{\infty}\left(f_{n}(y)-f(y)\right) e^{-2 \pi i x y} d y\right| \\
& \leq \int_{-\infty}^{\infty}\left|f_{n}(y)-f(y)\right| \underbrace{\left|e^{-2 \pi i x y}\right|}_{=1} d y \\
& =\int_{|y| \leq M} \underbrace{\left|f_{n}(y)-f(y)\right|}_{<\frac{\epsilon}{4 M}} d y+\underbrace{\int_{|y|>M}\left|f_{n}(y)-f(y)\right| d y}_{<\frac{\epsilon}{2}} \\
& <\frac{\epsilon}{4 M} \int_{|y| \leq M} 1 d y+\frac{\epsilon}{2} \\
& =\frac{\epsilon}{4 M}(2 M)+\frac{\epsilon}{2} \\
& =\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon \checkmark
\end{aligned}
$$

Therefore $\widehat{f}_{n} \rightarrow \widehat{f}$ uniformly

