MATH 409 - MOCK FINAL EXAM - SOLUTIONS

1. (a) Let $\epsilon>0$ be given, let $\delta=\epsilon$, then if $|x|<\delta=\epsilon$, then

$$
|f(x)-f(0)|=\left|x \sin \left(\frac{1}{x}\right)\right|=|x| \underbrace{\left|\sin \left(\frac{1}{x}\right)\right|}_{\leq 1} \leq|x|<\delta=\epsilon \checkmark
$$

Therefore f is continuous at $x=0$
(b)

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x \sin \left(\frac{1}{x}\right)}{x}=\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)
$$

Since the limit on the right does not exist, it follows that f is not differentiable at 0
(c) Notice that, by part (a), $f(x)$ is continuous on $[0,1]$, so f is a continuous extension of $\sin \left(\frac{1}{x}\right)$ to $[0,1]$ and therefore from lecture, $\sin \left(\frac{1}{x}\right)$ is uniformly continuous on $(0,1)$

[^0]2. Existence: Consider $g(x)=f(x)-x$, which is continuous since f is continuous. Then $g(0)=f(0)-0=f(0) \geq 0$ (since $0 \leq f \leq 1)$ and $g(1)=f(1)-1 \leq 0$ (since $0 \leq f \leq 1$), therefore by the Intermediate Value Theorem, there is c in $(0,1)$ such that $g(c)=0$, that is $f(c)-c=0$ so $f(c)=c \checkmark$

Uniqueness: Suppose f has two fixed points a and b, that is $f(a)=a$ and $f(b)=b$, then by the Mean Value theorem, there is c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=\frac{b-a}{b-a}=1
$$

Which contradicts that $f^{\prime}(x)$ is never $1 \Rightarrow \Leftarrow \checkmark$
3. (a) $f(x)=\frac{1}{x}$ on $\left[\frac{1}{2}, \infty\right)$

STEP 1: Scratchwork

$$
|f(x)-f(y)|=\left|\frac{1}{x}-\frac{1}{y}\right|=|y-x| x y=|x-y||x||y|
$$

However, $x \geq \frac{1}{2}$ so $|x| \geq \frac{1}{2}$ so $\frac{1}{|x|} \leq 2$ and similarly $\frac{1}{|y|} \leq 2$ and therefore

$$
|f(x)-f(y)|=\frac{|x-y|}{|x||y|} \leq 4|x-y|<\epsilon
$$

Which gives $|x-y|<\frac{\epsilon}{4}$ so $\delta=\frac{\epsilon}{4}$

STEP 2: Actual Proof

Let $\epsilon>0$ be given, let $\delta=\frac{\epsilon}{4}$, then if $|x-y|<\delta$, then

$$
|f(x)-f(y)|=|x-y||x||y| \leq 4|x-y|<4\left(\frac{\epsilon}{4}\right)=\epsilon \checkmark
$$

Hence f is uniformly continuous on $\left[\frac{1}{2}, \infty\right)$
(b) $f(x)=\sin (x)$ on $[0,1]$

Since f is continuous on $[0,1]$ and $[0,1]$ is compact (closed and bounded), f is uniformly continuous on $[0,1]$
(c) $f(x)=\frac{\sin (x)}{x}$ on $(0,1]$

Since $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$,

$$
\tilde{f}(x)= \begin{cases}\frac{\sin (x)}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

is a continuous extension of f on $[0,1]$, and therefore f is uniformly continuous on $(0,1]$
(d) $f(x)=\frac{1}{x-3}$ on $(0,3)$
f is not uniformly continuous because it is not bounded on $(0,3)$: For every $M>0$, notice $\frac{1}{x-3}>M$ implies $x-3<\frac{1}{M}$ which is true whenever $x<3+\frac{1}{M}$
(e) $f(x)=\sin (x)$ on \mathbb{R}

Notice $\left|f^{\prime}(x)\right|=|\cos (x)| \leq 1$, therefore f is uniformly continuous on \mathbb{R}
4. (a) $\lim _{x \rightarrow 2} \frac{1}{(x-2)^{2}}=\infty$

We need to show that for all $M>0$ there is δ such that if $0<|x-2|<\delta$, then $\frac{1}{(x-2)^{2}}>M$

STEP 1: Scratch Work

$$
\frac{1}{(x-2)^{2}}>M \Rightarrow(x-2)^{2}<\frac{1}{M} \Rightarrow-\frac{1}{\sqrt{M}}<x-2<\frac{1}{\sqrt{M}} \Rightarrow|x-2|<\frac{1}{\sqrt{M}}
$$

STEP 2: Actual Proof:

Let $M>0$ be given, let $\delta=\frac{1}{\sqrt{M}}$, then if $0<|x-2|<\delta$, then

$$
\frac{1}{(x-2)^{2}}>\frac{1}{\delta^{2}}=\frac{1}{\left(\frac{1}{\sqrt{M}}\right)^{2}}=M \checkmark
$$

Therefore $\lim _{x \rightarrow 2} \frac{1}{(x-2)^{2}}=\infty$
(b) $\lim _{x \rightarrow 3^{-}} \sqrt{3-x}+2=2$

We need to show that for all $\epsilon>0$ there is δ such that if $0<3-x<\delta$ then $|\sqrt{3-x}+2-2|<\epsilon$

STEP 1: Scratch Work

$$
|\sqrt{3-x}+2-2|=\sqrt{3-x}<\epsilon \Rightarrow 3-x<\epsilon^{2}
$$

STEP 2: Actual Proof:

Let $\epsilon>0$ be given, let $\delta=\epsilon^{2}$, then if $0<3-x<\delta$, then

$$
|\sqrt{3-x}+2-2|=\sqrt{3-x}<\sqrt{\delta}=\sqrt{\epsilon^{2}}=\epsilon \checkmark
$$

Therefore $\lim _{x \rightarrow 3^{-}} \sqrt{3-x}+2=2$
(c) $\lim _{x \rightarrow-\infty} \frac{1}{x+2}=0$

We need to show that for all $\epsilon>0$ there is $N<0$ such that if $x<N$ then $\left|\frac{1}{x+2}-0\right|<\epsilon$

STEP 1: Scratch Work

$$
\left|\frac{1}{x+2}-0\right|=\frac{1}{|x+2|}<\epsilon \Rightarrow|x+2|>\frac{1}{\epsilon} \Rightarrow x+2<-\frac{1}{\epsilon} \Rightarrow x<-2-\frac{1}{\epsilon}
$$

STEP 2: Actual Proof:

Let $\epsilon>0$ be given, let $N=-2-\frac{1}{\epsilon}$, then if $x<N$, then $x+2<-\frac{1}{\epsilon}$ so $|x+2|<\frac{1}{\epsilon}$ and so

$$
\left|\frac{1}{x+2}-0\right|=\frac{1}{|x+2|}<\frac{1}{\frac{1}{\epsilon}}=\epsilon \mathfrak{\checkmark}
$$

Therefore

$$
\lim _{x \rightarrow-\infty} \frac{1}{x+2}=0
$$

5. $U(f)$: Let P be the evenly spaced Calculus partition with $t_{k}=$ $\frac{k}{n}$. Since x^{2} is increasing, notice that:

$$
\begin{aligned}
M\left(f,\left[t_{k-1}, t_{k}\right]\right) & =f\left(t_{k}\right)=\left(t_{k}\right)^{2} \quad\left(\text { Since } t_{k} \text { is rational }\right) \\
U(f, P) & =\sum_{k=1}^{n} M\left(f,\left[t_{k-1}, t_{k}\right]\right)\left(t_{k}-t_{k-1}\right) \\
& =\sum_{k=1}^{n}\left(t_{k}\right)^{2}\left(t_{k}-t_{k-1}\right) \\
& =\sum_{k=1}^{n}\left(\frac{k}{n}\right)^{2}\left(\frac{1}{n}\right) \\
& =\sum_{k=1}^{n} \frac{k^{2}}{n^{3}} \\
& =\frac{1}{n^{3}} \sum_{k=1}^{n} k^{2} \\
& =\frac{1}{n^{3}}\left(\frac{n(n+1)(2 n+1)}{6}\right) \\
& =\frac{(n+1)(2 n+1)}{6 n^{2}}
\end{aligned}
$$

Since $U(f)$ is the inf over all partitions, we must have

$$
U(f) \leq U(f, P)=\frac{(n+1)(2 n+1)}{6 n^{2}}
$$

Therefore, taking the limit as $n \rightarrow \infty$ of the right hand side, we get $U(f) \leq \frac{2}{6}=\frac{1}{3}$.
$L(f)$: This is easier: For any partition P, we have $m\left(f,\left[t_{k-1}, t_{k}\right]\right)=$ 0 , since any sub-piece $\left[t_{k-1}, t_{k}\right]$ contains irrational numbers. Therefore

$$
L(f, P)=\sum_{k=1}^{n} m\left(f,\left[t_{k-1}, t_{k}\right]\right)\left(t_{k}-t_{k-1}\right)=\sum_{k=1}^{n} 0=0
$$

And taking the sup over all partitions P we get

$$
L(f)=\sup \{L(f, P) \mid P \text { partition }\}=\sup \{0\}=0
$$

6. By the Mean Value Theorem for Integrals, there is c^{\prime} in $(0,1)$ such that

$$
\begin{aligned}
f\left(c^{\prime}\right) & =\frac{\int_{0}^{1} f(x) d x}{1-0} \\
& =\int_{0}^{1} a x^{3}+b x^{2}+c x+d d x \\
& =\left[\frac{a x^{4}}{4}+\frac{b x^{3}}{3}+\frac{c x^{2}}{2}+d x\right]_{0}^{1} \\
& =\frac{a}{4}+\frac{b}{3}+\frac{c}{2}+d \\
& =0 \text { (By assumption) }
\end{aligned}
$$

Therefore there is c^{\prime} such that $f\left(c^{\prime}\right)=0$
7. Since the statement is true for all g, we can let $g(x)=f(x)$, which is continuous, and so by assumption, we get

$$
\int_{a}^{b} f(x) f(x) d x=0 \Rightarrow \int_{a}^{b} \underbrace{(f(x))^{2}}_{\geq 0} d x=0
$$

Since $(f(x))^{2}$ is continuous (by assumption) and non-negative, from lecture we obtain that $(f(x))^{2}=0$ for all x and therefore $f(x)=0$ for all x

[^0]: Date: Wednesday, December 15, 2021.

