MATH 409 – MOCK FINAL EXAM

Note: This mock final is giving you more practice with the material after Midterm 2. Remember that the actual final is cumulative.

1. (10 points) Consider the following function:

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

- (a) Use $\epsilon \delta$ to show that f is continuous at 0
- (b) Show that f is not differentiable at 0
- (c) Use a theorem in lecture to show that $\sin\left(\frac{1}{x}\right)$ is uniformly continuous on (0, 1)

Date: Wednesday, December 15, 2021.

2. (10 points) Suppose $f : [0,1] \to [0,1]$ is differentiable and $f'(x) \neq 1$ for all x. Show that f has a unique fixed point.

- 3. (10 points) Show that the following functions are uniformly continuous. Unless stated otherwise, you may use any theorem covered in lecture
 - (a) $f(x) = \frac{1}{x}$ on $[\frac{1}{2}, \infty)$ (use $\epsilon \delta$) (b) $f(x) = \sin(x)$ on [0, 1](c) $f(x) = \frac{\sin(x)}{x}$ on (0, 1](d) $f(x) = \frac{1}{x-3}$ on (0, 3)(e) $f(x) = \sin(x)$ on \mathbb{R}

- 4. (10 points) Use $\epsilon \delta$ (or any variation thereof) to evaluate the following limits:
 - (a) $\lim_{x\to 2} \frac{1}{(x-2)^2} = \infty$ (b) $\lim_{x\to 3^-} \sqrt{3-x} + 2 = 2$ (c) $\lim_{x\to -\infty} \frac{1}{x+2} = 0$

5. (10 points) For the following function f on [0,1], show that $U(f) \leq \frac{1}{3}$ and L(f) = 0

$$f(x) = \begin{cases} x^2 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

Note: You may use $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$

6. (10 points) Suppose $f(x) = ax^3 + bx^2 + cx + d$ is such that $\frac{a}{4} + \frac{b}{3} + \frac{c}{2} + d = 0$. Show that f has at least one root in [0, 1]

7. (10 points) Suppose f is continuous on [a, b] and $\int_a^b f(x)g(x)dx = 0$ for every continuous g, show that f(x) = 0 for all x.