MATH 140A - MOCK FINAL EXAM - SOLUTIONS

1. Let $m = \inf(S)$, then

 $\inf(S) = -\sup(-S) \Leftrightarrow m = -\sup(-S) \Leftrightarrow -m = \sup(-S)$

To show $-m = \sup(-S)$, we need to show that (1) -m is an upper bound of -S and (2) -m is the least upper bound of -S

Upper Bound: Let $-s \in -S$, then, since $m = \inf(S)$, we have $m \leq s$, and so $-s \leq -m$. But since -s was arbitrary in -S, -m is an upper bound for $-S \checkmark$

Least upper bound: Suppose $m_1 < -m$, we need to show that there is $-s \in -S$ such that $-s > m_1$. But since $m_1 < -m$, $-m_1 > m$, and so, since $m = \inf(S)$, there is $s \in S$ with $s < -m_1$, that is $-s > m_1 \checkmark$

Hence $-m = \sup(-S)$ and so

$$\inf(S) = m = -(-m) = -\sup(-S) \quad \Box$$

Date: Tuesday, June 9, 2020.

2. Let $\epsilon > 0$ be given.

Then, since $s_n \to s$, there is N_1 such that if $n > N_1$, then $|s_n - s| < \frac{\epsilon}{2}$.

And since $t_n \to t$, there is N_2 such that if $n > N_2$, then $|t_n - t| < \frac{\epsilon}{2}$

Let $N = \max \{N_1, N_2\}$, then if n > N we have

$$|s_n - t_n - (s - t)| = |s_n - s - t_n + t|$$

= $|s_n - s - (t_n - t)|$
 $\leq |s_n - s| + |t_n - t|$
 $< \frac{\epsilon}{2} + \frac{\epsilon}{2}$
= $\epsilon \checkmark$

Hence $s_n - t_n \rightarrow s - t$

_	-	-	

3. (a) Fix N

Claim:

$$\sup \{ks_n \mid n > N\} = k \sup \{s_n \mid n > N\}$$

Proof of Claim: Let $M = \sup \{s_n \mid n > N\}$, and let's show $\sup \{ks_n \mid n > N\} = kM$.

Upper Bound: If n > N, then, since M is an upper bound for $\{s_n \mid n > N\}$, $s_n \leq M$, and so, since $k \geq 0$, we have $ks_n \leq kM$. Therefore, kM is an upper bound for $\{ks_n \mid n > N\}$

Least Upper Bound: Suppose $M_1 < kM$, then $\frac{M_1}{k} < M$, and so by definition of M as a sup, there is n > N such that $s_n > \frac{M_1}{k}$, that is $ks_n > M_1 \checkmark$ (since ks_n is an element of $\{ks_n \mid n > N\}$)

Therefore we get

$$\sup \{ks_n \mid n > N\} = k \sup \{s_n \mid n > N\}$$

And taking limits, we have

$$\limsup_{n \to \infty} ks_n = \lim_{N \to \infty} \sup \{ks_n \mid n > N\}$$
$$= \lim_{N \to \infty} k \sup \{s_n \mid n > N\}$$
$$= k \lim_{N \to \infty} \sup \{s_n \mid n > N\}$$
$$= k \left(\limsup_{n \to \infty} s_n\right) \checkmark$$

(b) **NO**: Let
$$s_n = (-1)^n$$
 and $k = -1$, then

$$\limsup_{n \to \infty} k s_n = \limsup_{n \to \infty} (-1)^{n+1} = 1, \text{ but}$$
$$k \left(\limsup_{n \to \infty} s_n\right) = (-1) \limsup_{n \to \infty} (-1)^n = (-1)(1) = -1$$

- 4. (a) Let {U_α} be any collection of open subsets of S, and let U be their union. If x ∈ U, then x is in some U_α for some α. But since U_α is open, there is r > 0 such that B(x,r) ⊆ U_α ⊆ U √
 - (b) Let U_1, \ldots, U_N be finitely many open subsets of S and let Ube their intersection. If $x \in U$, then for every $n = 1, \ldots, N$, $x \in U_n$, and therefore, since U_n is open, there is $r_n > 0$ such that $B(x, r_n) \subseteq U_n$. Let $r =: \min\{r_1, \ldots, r_N\} > 0$. Then, for every $n, B(x, r) \subseteq B(x, r_n) \subseteq U_n$ and therefore $B(x, r) \subseteq U$ (by definition of intersection) $\checkmark \checkmark$
 - (c) **NO** Let $U_n = (-n, n)$ where $n \in \mathbb{N}$. Then each U_n is open in \mathbb{R} , but the intersection of the U_n is $\{0\}$, which is not open \checkmark

5. Let $f(x) = \frac{1}{\sqrt{x}}$ and consider the partial sums

$$s_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} = 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}$$

= Area Rectangle 1 + Area Rectangle 2
+ \dots + Area Rectangle n
= Sum of Areas of Rectangles

Where Rectangle 1 is the rectangle with base [1, 2] and height 1, Rectangle 2 is the rectangle with base [2, 3] and height $\frac{1}{\sqrt{2}}, \ldots$ and Rectangle *n* is the rectangle with base [n, n+1] and height $\frac{1}{\sqrt{n}}$.

Since f is decreasing on $[1, \infty)$, the sum of the areas of the rectangles is greater than or equal to the area under f from 1 to n + 1, and hence

$$s_n \ge \int_1^{n+1} \frac{1}{\sqrt{x}} dx$$
$$= \left[2\sqrt{x} \right]_1^{n+1}$$
$$= 2\sqrt{n+1} - 2$$

But since $\lim_{n\to\infty} 2\sqrt{n+1} - 2 = \infty$, by comparison, we get

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \lim_{n \to \infty} s_n = \infty \checkmark \quad \Box$$

6. **STEP 1:** Notice that

$$f(x^4) = f((x^2)^2) = f(x^2) = f(x)$$

And more generally, let's prove:

Claim:
$$f(x^{2^n}) = f(x)$$
 for all $n \ge 0$

Proof of Claim: Let P_n be the proposition $f(x^{2^n}) = f(x)$

Base Case:
$$(n = 0)$$
, then $f(x^{2^0}) = f(x^1) = f(x) \checkmark$

Inductive Step: Suppose P_n is true, that is $f(x^{2^n}) = f(x)$, show P_{n+1} is true, that is $f(x^{2^{n+1}}) = f(x)$. But

$$f(x^{2^{n+1}}) = f(x^{2 \times 2^n}) = f((x^{2^n})^2) = f(x^{2^n}) = f(x)\checkmark$$

(where, in the last step, we used the inductive hypothesis)

Hence P_{n+1} is true, and hence P_n is true for all $n \checkmark$

STEP 2: Fix $x \in (-1, 1)$ and let $s_n = x^{2^n}$. Notice that, if $n \to \infty$, $2^n \to \infty$, and hence, since $x \in (-1, 1)$, we have |x| < 1 and hence $s_n = x^{2^n} \to 0$. Therefore, since f is continuous, we have $\lim_{n\to\infty} f(s_n) = f(0)$.

However, taking $n \to \infty$ in the identity $f(x^{2^n}) = f(x)$, we get:

$$f(x) = \lim_{n \to \infty} f(x) = \lim_{n \to \infty} f(x^{2^n}) = \lim_{n \to \infty} f(s_n) = f(0)\checkmark$$

And therefore f(x) = f(0) for all x

7. Let $y \ge 0$ be given and let $f(x) = x^2$ on $[0, \infty)$ Case 1: $y \le 1$

Then $f(0) = 0 \le y$ and $f(1) = 1 \ge y$, so, since f is continuous on [0, 1], by the Intermediate Value Theorem, there is $x \in [0, 1]$ such that f(x) = y, that is $x^2 = y \checkmark$

Case 2: $y \ge 1$

Then $f(0) = 0 \le y$ and $f(y) = y^2 \ge y$ (since $y \ge 1$) and therefore, since f is continuous on [0, y], by the Intermediate Value Theorem, there is $x \in [0, y]$ such that f(x) = y, that is $x^2 = y \checkmark$

Uniqueness: Suppose $a^2 = y$ and $b^2 = y$ for some $a, b \ge 0$ then

$$a^{2} - b^{2} = (a - b)(a + b) = y - y = 0$$

Hence, either a - b = 0, so $a = b \checkmark$, or a + b = 0, so a = -b, in which case a = 0 and b = 0 (since a and b are non-negative), in which case a = b as well \checkmark

8. STEP 1: Scratch Work

Let $\epsilon > 0$ be TBA and let $\delta > 0$ be given

$$|x^{2} - y^{2}| = |x - y| |x + y| = |x - y| (x + y) \stackrel{?}{\geq} \epsilon$$

Let a = |x - y|, then since $|x - y| < \delta$, we get $a < \delta$

WLOG, assume x < y, then |x - y| = y - x

$$|x - y| = a \Rightarrow y - x = a \Rightarrow y = x + a$$

Finally, we get

$$|x - y| |x + y| = a (x + (x + a)) = a (2x + a) \ge \epsilon$$

Which gives

$$2x + a \ge \frac{\epsilon}{a} \Rightarrow 2x \ge \frac{\epsilon}{a} - a \Rightarrow 2x \ge \frac{\epsilon - a^2}{a} \Rightarrow x \ge \frac{\epsilon - a^2}{2a}$$

Now, in order to guarantee $x \ge 0$, we just need $\epsilon - a^2 \ge 0$, so $a^2 \le \epsilon$ and so $a \le \sqrt{\epsilon}$

Therefore let $x = \frac{\epsilon - a^2}{2a} \ge 0$ and

$$y = x + a = \frac{\epsilon - a^2}{2a} + a = \frac{\epsilon - a^2 + 2a^2}{2a} = \frac{\epsilon + a^2}{2a} \ge 0$$

STEP 2: Actual Proof:

Let $\epsilon > 0$ be anything you want

Let $\delta > 0$ be given and suppose $a < \min \{\delta, \sqrt{\epsilon}\}$.

Then let

$$x = \frac{\epsilon - a^2}{2a} \qquad y = x + a = \frac{\epsilon + a^2}{2a}$$

Then $x, y \in [0, \infty)$ and $|x - y| = |x - (x + a)| = |-a| = a < \delta$ but

$$|f(x) - f(y)| = |x - y| (x + y) = a (2x + a) = a \left(\frac{\epsilon}{a} - a + a\right) = a \left(\frac{\epsilon}{a}\right) = \epsilon \ge \epsilon \checkmark$$

Hence $f(x) = x^2$ is not uniformly continuous on $[0, \infty)$