MATH 140A - MOCK FINAL EXAM - SOLUTIONS

1. Let $m=\inf (S)$, then

$$
\inf (S)=-\sup (-S) \Leftrightarrow m=-\sup (-S) \Leftrightarrow-m=\sup (-S)
$$

To show $-m=\sup (-S)$, we need to show that (1) $-m$ is an upper bound of $-S$ and (2) $-m$ is the least upper bound of $-S$

Upper Bound: Let $-s \in-S$, then, since $m=\inf (S)$, we have $m \leq s$, and so $-s \leq-m$. But since $-s$ was arbitrary in $-S$, $-m$ is an upper bound for $-S \checkmark$

Least upper bound: Suppose $m_{1}<-m$, we need to show that there is $-s \in-S$ such that $-s>m_{1}$. But since $m_{1}<-m$, $-m_{1}>m$, and so, since $m=\inf (S)$, there is $s \in S$ with $s<-m_{1}$, that is $-s>m_{1} \checkmark$

Hence $-m=\sup (-S)$ and so

$$
\inf (S)=m=-(-m)=-\sup (-S)
$$

[^0]2. Let $\epsilon>0$ be given.

Then, since $s_{n} \rightarrow s$, there is N_{1} such that if $n>N_{1}$, then $\left|s_{n}-s\right|<\frac{\epsilon}{2}$.

And since $t_{n} \rightarrow t$, there is N_{2} such that if $n>N_{2}$, then $\left|t_{n}-t\right|<\frac{\epsilon}{2}$

Let $N=\max \left\{N_{1}, N_{2}\right\}$, then if $n>N$ we have

$$
\begin{aligned}
\left|s_{n}-t_{n}-(s-t)\right| & =\left|s_{n}-s-t_{n}+t\right| \\
& =\left|s_{n}-s-\left(t_{n}-t\right)\right| \\
& \leq\left|s_{n}-s\right|+\left|t_{n}-t\right| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon \checkmark
\end{aligned}
$$

Hence $s_{n}-t_{n} \rightarrow s-t$
3. (a) $\operatorname{Fix} N$

$$
\begin{aligned}
& \text { Claim: } \\
& \qquad \sup \left\{k s_{n} \mid n>N\right\}=k \sup \left\{s_{n} \mid n>N\right\}
\end{aligned}
$$

Proof of Claim: Let $M=\sup \left\{s_{n} \mid n>N\right\}$, and let's show $\sup \left\{k s_{n} \mid n>N\right\}=k M$.

Upper Bound: If $n>N$, then, since M is an upper bound for $\left\{s_{n} \mid n>N\right\}$, $s_{n} \leq M$, and so, since $k \geq 0$, we have $k s_{n} \leq k M$. Therefore, $k M$ is an upper bound for $\left\{k s_{n} \mid n>N\right\}$

Least Upper Bound: Suppose $M_{1}<k M$, then $\frac{M_{1}}{k}<M$, and so by definition of M as a sup, there is $n>N$ such that $s_{n}>\frac{M_{1}}{k}$, that is $k s_{n}>M_{1} \checkmark$ (since $k s_{n}$ is an element of $\left\{k s_{n} \mid n>N\right\}$)

Therefore we get

$$
\sup \left\{k s_{n} \mid n>N\right\}=k \sup \left\{s_{n} \mid n>N\right\}
$$

And taking limits, we have

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} k s_{n} & =\lim _{N \rightarrow \infty} \sup \left\{k s_{n} \mid n>N\right\} \\
& =\lim _{N \rightarrow \infty} k \sup \left\{s_{n} \mid n>N\right\} \\
& =k \lim _{N \rightarrow \infty} \sup \left\{s_{n} \mid n>N\right\} \\
& =k\left(\limsup _{n \rightarrow \infty} s_{n}\right) \checkmark
\end{aligned}
$$

(b) NO: Let $s_{n}=(-1)^{n}$ and $k=-1$, then

$$
\begin{gathered}
\limsup _{n \rightarrow \infty} k s_{n}=\limsup _{n \rightarrow \infty}(-1)^{n+1}=1, \text { but } \\
k\left(\limsup _{n \rightarrow \infty} s_{n}\right)=(-1) \limsup _{n \rightarrow \infty}(-1)^{n}=(-1)(1)=-1
\end{gathered}
$$

4. (a) Let $\left\{U_{\alpha}\right\}$ be any collection of open subsets of S, and let U be their union. If $x \in U$, then x is in some U_{α} for some α. But since U_{α} is open, there is $r>0$ such that $B(x, r) \subseteq U_{\alpha} \subseteq U \checkmark$
(b) Let U_{1}, \ldots, U_{N} be finitely many open subsets of S and let U be their intersection. If $x \in U$, then for every $n=1, \ldots, N$, $x \in U_{n}$, and therefore, since U_{n} is open, there is $r_{n}>0$ such that $B\left(x, r_{n}\right) \subseteq U_{n}$. Let $r=: \min \left\{r_{1}, \ldots, r_{N}\right\}>0$. Then, for every $n, B(x, r) \subseteq B\left(x, r_{n}\right) \subseteq U_{n}$ and therefore $B(x, r) \subseteq U$ (by definition of intersection) $\checkmark \checkmark$
(c) NO Let $U_{n}=(-n, n)$ where $n \in \mathbb{N}$. Then each U_{n} is open in \mathbb{R}, but the intersection of the U_{n} is $\{0\}$, which is not open \checkmark
5. Let $f(x)=\frac{1}{\sqrt{x}}$ and consider the partial sums

$$
\begin{aligned}
s_{n}=\sum_{k=1}^{n} \frac{1}{\sqrt{k}}= & 1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}} \\
= & \text { Area Rectangle } 1+\text { Area Rectangle } 2 \\
& +\cdots+\text { Area Rectangle } \mathrm{n} \\
= & \text { Sum of Areas of Rectangles }
\end{aligned}
$$

Where Rectangle 1 is the rectangle with base $[1,2]$ and height 1 , Rectangle 2 is the rectangle with base $[2,3]$ and height $\frac{1}{\sqrt{2}}, \ldots$ and Rectangle n is the rectangle with base $[n, n+1]$ and height $\frac{1}{\sqrt{n}}$.

Since f is decreasing on $[1, \infty)$, the sum of the areas of the rectangles is greater than or equal to the area under f from 1 to $n+1$, and hence

$$
\begin{aligned}
s_{n} & \geq \int_{1}^{n+1} \frac{1}{\sqrt{x}} d x \\
& =[2 \sqrt{x}]_{1}^{n+1} \\
& =2 \sqrt{n+1}-2
\end{aligned}
$$

But since $\lim _{n \rightarrow \infty} 2 \sqrt{n+1}-2=\infty$, by comparison, we get

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}=\lim _{n \rightarrow \infty} s_{n}=\infty \checkmark
$$

6. STEP 1: Notice that

$$
f\left(x^{4}\right)=f\left(\left(x^{2}\right)^{2}\right)=f\left(x^{2}\right)=f(x)
$$

And more generally, let's prove:
Claim: $f\left(x^{2^{n}}\right)=f(x)$ for all $n \geq 0$

Proof of Claim: Let P_{n} be the proposition $f\left(x^{2^{n}}\right)=f(x)$
Base Case: $(n=0)$, then $f\left(x^{2^{0}}\right)=f\left(x^{1}\right)=f(x) \checkmark$
Inductive Step: Suppose P_{n} is true, that is $f\left(x^{2^{n}}\right)=f(x)$, show P_{n+1} is true, that is $f\left(x^{2^{n+1}}\right)=f(x)$. But

$$
f\left(x^{2^{n+1}}\right)=f\left(x^{2 \times 2^{n}}\right)=f\left(\left(x^{2^{n}}\right)^{2}\right)=f\left(x^{2^{n}}\right)=f(x) \checkmark
$$

(where, in the last step, we used the inductive hypothesis)

Hence P_{n+1} is true, and hence P_{n} is true for all $n \checkmark$

STEP 2: Fix $x \in(-1,1)$ and let $s_{n}=x^{2^{n}}$. Notice that, if $n \rightarrow \infty, 2^{n} \rightarrow \infty$, and hence, since $x \in(-1,1)$, we have $|x|<1$ and hence $s_{n}=x^{2^{n}} \rightarrow 0$. Therefore, since f is continuous, we have $\lim _{n \rightarrow \infty} f\left(s_{n}\right)=f(0)$.

However, taking $n \rightarrow \infty$ in the identity $f\left(x^{2^{n}}\right)=f(x)$, we get:

$$
f(x)=\lim _{n \rightarrow \infty} f(x)=\lim _{n \rightarrow \infty} f\left(x^{2^{n}}\right)=\lim _{n \rightarrow \infty} f\left(s_{n}\right)=f(0) \checkmark
$$

And therefore $f(x)=f(0)$ for all x
7. Let $y \geq 0$ be given and let $f(x)=x^{2}$ on $[0, \infty)$

Case 1: $y \leq 1$

Then $f(0)=0 \leq y$ and $f(1)=1 \geq y$, so, since f is continuous on $[0,1]$, by the Intermediate Value Theorem, there is $x \in[0,1]$ such that $f(x)=y$, that is $x^{2}=y \checkmark$

Case 2: $y \geq 1$

Then $f(0)=0 \leq y$ and $f(y)=y^{2} \geq y$ (since $y \geq 1$) and therefore, since f is continuous on $[0, y]$, by the Intermediate Value Theorem, there is $x \in[0, y]$ such that $f(x)=y$, that is $x^{2}=y \checkmark$

Uniqueness: Suppose $a^{2}=y$ and $b^{2}=y$ for some $a, b \geq 0$ then

$$
a^{2}-b^{2}=(a-b)(a+b)=y-y=0
$$

Hence, either $a-b=0$, so $a=b \checkmark$, or $a+b=0$, so $a=-b$, in which case $a=0$ and $b=0$ (since a and b are non-negative), in which case $a=b$ as well \checkmark

8. STEP 1: Scratch Work

Let $\epsilon>0$ be TBA and let $\delta>0$ be given

$$
\left|x^{2}-y^{2}\right|=|x-y||x+y|=|x-y|(x+y) \stackrel{?}{\geq} \epsilon
$$

Let $a=|x-y|$, then since $|x-y|<\delta$, we get $a<\delta$

WLOG, assume $x<y$, then $|x-y|=y-x$

$$
|x-y|=a \Rightarrow y-x=a \Rightarrow \mathrm{y}=\mathrm{x}+\mathrm{a}
$$

Finally, we get

$$
|x-y||x+y|=a(x+(x+a))=a(2 x+a) \geq \epsilon
$$

Which gives
$2 x+a \geq \frac{\epsilon}{a} \Rightarrow 2 x \geq \frac{\epsilon}{a}-a \Rightarrow 2 x \geq \frac{\epsilon-a^{2}}{a} \Rightarrow x \geq \frac{\epsilon-a^{2}}{2 a}$
Now, in order to guarantee $x \geq 0$, we just need $\epsilon-a^{2} \geq 0$, so $a^{2} \leq \epsilon$ and so $a \leq \sqrt{\epsilon}$

Therefore let $x=\frac{\epsilon-a^{2}}{2 a} \geq 0$ and

$$
y=x+a=\frac{\epsilon-a^{2}}{2 a}+a=\frac{\epsilon-a^{2}+2 a^{2}}{2 a}=\frac{\epsilon+a^{2}}{2 a} \geq 0
$$

STEP 2: Actual Proof:

Let $\epsilon>0$ be anything you want

Let $\delta>0$ be given and suppose $a<\min \{\delta, \sqrt{\epsilon}\}$.

Then let

$$
x=\frac{\epsilon-a^{2}}{2 a} \quad y=x+a=\frac{\epsilon+a^{2}}{2 a}
$$

Then $x, y \in[0, \infty)$ and $|x-y|=|x-(x+a)|=|-a|=a<\delta$ but

$$
|f(x)-f(y)|=|x-y|(x+y)=a(2 x+a)=a\left(\frac{\epsilon}{a}-a+a\right)=a\left(\frac{\epsilon}{a}\right)=\epsilon \geq \epsilon \checkmark
$$

Hence $f(x)=x^{2}$ is not uniformly continuous on $[0, \infty)$

[^0]: Date: Tuesday, June 9, 2020.

