
MATH 140A − MOCK FINAL EXAM − SOLUTIONS

1. Let m = inf(S), then

inf(S) = − sup(−S)⇔ m = − sup(−S)⇔ −m = sup(−S)

To show −m = sup(−S), we need to show that (1) −m is an
upper bound of −S and (2) −m is the least upper bound of −S

Upper Bound: Let −s ∈ −S, then, since m = inf(S), we have
m ≤ s, and so −s ≤ −m. But since −s was arbitrary in −S,
−m is an upper bound for −S X

Least upper bound: Supposem1 < −m, we need to show that
there is −s ∈ −S such that −s > m1. But since m1 < −m,
−m1 > m, and so, since m = inf(S), there is s ∈ S with
s < −m1, that is −s > m1 X

Hence −m = sup(−S) and so

inf(S) = m = −(−m) = − sup(−S) �
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2. Let ε > 0 be given.

Then, since sn → s, there is N1 such that if n > N1, then
|sn − s| < ε

2 .

And since tn → t, there is N2 such that if n > N2, then
|tn − t| < ε

2

Let N = max {N1, N2}, then if n > N we have

|sn − tn − (s− t)| = |sn − s− tn + t|
= |sn − s− (tn − t)|
≤ |sn − s|+ |tn − t|

<
ε

2
+
ε

2
=εX

Hence sn − tn → s− t �
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3. (a) Fix N

Claim:

sup {ksn | n > N} = k sup {sn | n > N}

Proof of Claim: Let M = sup {sn | n > N}, and let’s
show sup {ksn | n > N} = kM .

Upper Bound: If n > N , then, since M is an upper
bound for {sn | n > N}, sn ≤ M , and so, since k ≥ 0, we
have ksn ≤ kM . Therefore, kM is an upper bound for
{ksn | n > N}

Least Upper Bound: Suppose M1 < kM , then M1

k < M ,
and so by definition of M as a sup, there is n > N such
that sn >

M1

k , that is ksn > M1 X(since ksn is an element
of {ksn | n > N})

Therefore we get

sup {ksn | n > N} = k sup {sn | n > N}

And taking limits, we have

lim sup
n→∞

ksn = lim
N→∞

sup {ksn | n > N}

= lim
N→∞

k sup {sn | n > N}

=k lim
N→∞

sup {sn | n > N}

=k

(
lim sup
n→∞

sn

)
X
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(b) NO: Let sn = (−1)n and k = −1, then

lim sup
n→∞

ksn = lim sup
n→∞

(−1)n+1 = 1, but

k

(
lim sup
n→∞

sn

)
= (−1) lim sup

n→∞
(−1)n = (−1)(1) = −1
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4. (a) Let {Uα} be any collection of open subsets of S, and let
U be their union. If x ∈ U , then x is in some Uα for
some α. But since Uα is open, there is r > 0 such that
B(x, r) ⊆ Uα ⊆ U X

(b) Let U1, . . . , UN be finitely many open subsets of S and let U
be their intersection. If x ∈ U , then for every n = 1, . . . , N ,
x ∈ Un, and therefore, since Un is open, there is rn > 0
such that B(x, rn) ⊆ Un. Let r =: min {r1, . . . , rN} > 0.
Then, for every n, B(x, r) ⊆ B(x, rn) ⊆ Un and therefore
B(x, r) ⊆ U (by definition of intersection) XX

(c) NO Let Un = (−n, n) where n ∈ N. Then each Un is open
in R, but the intersection of the Un is {0}, which is not
open X
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5. Let f(x) = 1√
x

and consider the partial sums

sn =
n∑
k=1

1√
k

=1 +
1√
2

+ · · ·+ 1√
n

= Area Rectangle 1 + Area Rectangle 2

+ · · ·+ Area Rectangle n

= Sum of Areas of Rectangles

Where Rectangle 1 is the rectangle with base [1, 2] and height 1,
Rectangle 2 is the rectangle with base [2, 3] and height 1√

2
, . . .

and Rectangle n is the rectangle with base [n, n+ 1] and height
1√
n
.

Since f is decreasing on [1,∞), the sum of the areas of the
rectangles is greater than or equal to the area under f from 1
to n+ 1, and hence

sn ≥
∫ n+1

1

1√
x
dx

=
[
2
√
x
]n+1

1

=2
√
n+ 1− 2

But since limn→∞ 2
√
n+ 1− 2 =∞, by comparison, we get

∞∑
n=1

1√
n

= lim
n→∞

sn =∞X �
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6. STEP 1: Notice that

f(x4) = f
((
x2
)2)

= f(x2) = f(x)

And more generally, let’s prove:

Claim: f
(
x2

n)
= f(x) for all n ≥ 0

Proof of Claim: Let Pn be the proposition f
(
x2

n)
= f(x)

Base Case: (n = 0), then f
(
x2

0
)

= f(x1) = f(x) X

Inductive Step: Suppose Pn is true, that is f
(
x2

n)
= f(x),

show Pn+1 is true, that is f
(
x2

n+1
)

= f(x). But

f
(
x2

n+1
)

= f
(
x2×2

n)
= f

((
x2

n)2)
= f

(
x2

n)
= f(x)X

(where, in the last step, we used the inductive hypothesis)

Hence Pn+1 is true, and hence Pn is true for all n X

STEP 2: Fix x ∈ (−1, 1) and let sn = x2
n

. Notice that, if
n→∞, 2n →∞, and hence, since x ∈ (−1, 1), we have |x| < 1
and hence sn = x2

n → 0. Therefore, since f is continuous, we
have limn→∞ f(sn) = f(0).

However, taking n→∞ in the identity f(x2
n

) = f(x), we get:
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f(x) = lim
n→∞

f(x) = lim
n→∞

f(x2
n

) = lim
n→∞

f(sn) = f(0)X

And therefore f(x) = f(0) for all x �
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7. Let y ≥ 0 be given and let f(x) = x2 on [0,∞)

Case 1: y ≤ 1

Then f(0) = 0 ≤ y and f(1) = 1 ≥ y, so, since f is continuous
on [0, 1], by the Intermediate Value Theorem, there is x ∈ [0, 1]
such that f(x) = y, that is x2 = y X

Case 2: y ≥ 1

Then f(0) = 0 ≤ y and f(y) = y2 ≥ y (since y ≥ 1) and there-
fore, since f is continuous on [0, y], by the Intermediate Value
Theorem, there is x ∈ [0, y] such that f(x) = y, that is x2 = y X

Uniqueness: Suppose a2 = y and b2 = y for some a, b ≥ 0
then

a2 − b2 = (a− b)(a+ b) = y − y = 0

Hence, either a− b = 0, so a = b X, or a+ b = 0, so a = −b, in
which case a = 0 and b = 0 (since a and b are non-negative), in
which case a = b as well X �
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8. STEP 1: Scratch Work

Let ε > 0 be TBA and let δ > 0 be given

∣∣x2 − y2∣∣ = |x− y| |x+ y| = |x− y| (x+ y)
?
≥ ε

Let a = |x− y|, then since |x− y| < δ, we get a < δ

WLOG, assume x < y, then |x− y| = y − x

|x− y| = a⇒ y − x = a⇒ y = x + a

Finally, we get

|x− y| |x+ y| = a (x+ (x+ a)) = a (2x+ a) ≥ ε

Which gives

2x+ a ≥ ε

a
⇒ 2x ≥ ε

a
− a⇒ 2x ≥ ε− a2

a
⇒ x ≥ ε− a2

2a

Now, in order to guarantee x ≥ 0, we just need ε − a2 ≥ 0, so

a2 ≤ ε and so a ≤
√
ε

Therefore let x = ε−a2
2a ≥ 0 and

y = x+ a =
ε− a2

2a
+ a =

ε− a2 + 2a2

2a
=
ε+ a2

2a
≥ 0
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STEP 2: Actual Proof:

Let ε > 0 be anything you want

Let δ > 0 be given and suppose a < min {δ,
√
ε}.

Then let

x =
ε− a2

2a
y = x+ a =

ε+ a2

2a

Then x, y ∈ [0,∞) and |x− y| = |x− (x+ a)| = |−a| = a < δ
but

|f(x)− f(y)| = |x− y| (x+y) = a (2x+ a) = a
( ε
a
− a+ a

)
= a

( ε
a

)
= ε ≥ εX

Hence f(x) = x2 is not uniformly continuous on [0,∞) �


