MATH 140A – MOCK FINAL EXAM

1. (10 points) Suppose S is a nonempty and bounded subset of \mathbb{R} . Show that

$$\inf(S) = -\sup(-S)$$

Date: Tuesday, June 9, 2020.

2. (10 points)

Suppose (s_n) and (t_n) are convergent sequences in \mathbb{R} with $s_n \to s$ and $t_n \to t$. Show using the definition of a limit that

$$\lim_{n \to \infty} s_n - t_n = s - t$$

- 3. (10 = 8+2 points)
 - (a) Show that if (s_n) is a bounded sequence in \mathbb{R} and $k \ge 0$, then

$$\limsup_{n \to \infty} k s_n = k \left(\limsup_{n \to \infty} s_n\right)$$

(b) Is the same result true if you replace $k \ge 0$ by $k \in \mathbb{R}$?

- 4. (10 = 4 + 4 + 2 points) Let (S, d) be a metric space
 - (a) Show that the union of any number of open subsets of S is open
 - (b) Show that the intersection of finitely many open subsets of ${\cal S}$ is open
 - (c) Is the intersection of infinitely many open subsets of S always open?

Suggestion: I *highly* recommend also checking out the metric space problems on Mock Midterm 2.

5. (10 points) Prove the integral test in the case of

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

- 6. (10 points) Suppose f is a continuous function on (-1, 1) that satisfies $f(x^2) = f(x)$ for all x. Show that f is constant
 - **Hint:** Show that f(x) = f(0) for all x. For this, calculate $f(x^4)$, $f(x^8)$, and, more generally, $f(x^{2^n})$ for $n \ge 0$

7. (10 points) Suppose $y \ge 0$ is given. Show that there is a unique $x \ge 0$ such that $y = x^2$

8. (10 points) Show directly, using the definition of uniform continuity that $f(x) = x^2$ is not uniformly continuous on $[0, \infty)$

Hint: This is similar to (but easier than) Example 3 in Lecture 27. Let $\epsilon > 0$ be TBA and fix δ . Let a = |x - y| and assume x < y.