MATH 140A - MOCK MIDTERM 1 - SOLUTIONS

1.

STEP 1: First of all, if $s \in A+B$, then $s=a+b$ where $a \in A$ and $b \in B$, but by definition of $\sup (A)$ we get $a \leq \sup (A)$ and similarly $b \leq \sup (B)$, hence

$$
s=a+b \leq \sup (A)+\sup (B)
$$

Since s was arbitrary, $\sup (A)+\sup (B)$ is an upper bound for $A+B$, so because $\sup (A+B)$ is the least upper bound for $A+B$, we get

$$
\sup (A+B) \leq \sup (A)+\sup (B) \checkmark
$$

STEP 2: Fix $a \in A$, then for every $b \in B$, since $a+b \in A+B$ and by definition of $\sup (A+B)$, we get:

$$
\begin{aligned}
a+b & \leq \sup (A+B) \\
a & \leq \sup (A+B)-b
\end{aligned}
$$

But since $a \in A$ is arbitrary, $\sup (A+B)-b$ is an upper bound for A, and hence since $\sup (A)$ is the least upper bound:

$$
\begin{aligned}
\sup (A) & \leq \sup (A+B)-b \\
b & \leq \sup (A+B)-\sup (A)
\end{aligned}
$$

[^0]But since $b \in B$ is arbitrary, $\sup (A+B)-\sup (A)$ is an upper bound for B, so since $\sup (B)$ is the least upper bound:

$$
\begin{aligned}
\sup (B) & \leq \sup (A+B)-\sup (A) \\
\sup (A)+\sup (B) & \leq \sup (A+B) \checkmark
\end{aligned}
$$

Therefore $\sup (A+B)=\sup (A)+\sup (B)$.
2.

STEP 1: Scratchwork

Since $\left(s_{n}\right)$ converges, $\left(s_{n}\right)$ is bounded above, so there is $M>0$ such that $\left|s_{n}\right| \leq M$ for all n.,

$$
\begin{aligned}
\left|\left(s_{n}\right)^{2}-s^{2}\right| & =\left|s_{n}-s\right|\left|s_{n}+s\right| \\
& \leq\left|s_{n}-s\right|\left(\left|s_{n}\right|+|s|\right) \\
& \leq\left|s_{n}-s\right|(M+|s|) \\
& <\epsilon
\end{aligned}
$$

Which gives:

$$
\left|s_{n}-s\right|<\frac{\epsilon}{M+|s|}
$$

STEP 2: Actual Proof

First of all, since $\left(s_{n}\right)$ converges, $\left(s_{n}\right)$ is bounded, so there is $M>0$ such that $\left|s_{n}\right| \leq M$ for all n.

Let $\epsilon>0$ be given

Then since $s_{n} \rightarrow s$ there is N such that for all $n>N,\left|s_{n}-s\right|<$ $\frac{\epsilon}{M+|s|}$

With that same N, if $n>N$, we get:

$$
\begin{aligned}
\left|\left(s_{n}\right)^{2}-s^{2}\right| & =\left|s_{n}-s\right|\left|s_{n}+s\right| \\
& \leq\left|s_{n}-s\right|\left(\left|s_{n}\right|+|s|\right) \\
& \leq\left|s_{n}-s\right|(M+|s|) \\
& <\left(\frac{\epsilon}{M+|s|}\right)(M+|s|) \\
& =\epsilon \checkmark
\end{aligned}
$$

Therefore $\left(s_{n}\right)^{2}$ converges to s^{2}
3.

Suppose by contradiction that $\sup (B)=M$ where $M<\infty$. Since B has at least one positive term, we may assume $M>0$

Now consider $M_{1}=\frac{M}{2}<M$ (since $M>0$). By definition of sup this means there is $2^{n} \in B$ such that $2^{n}>\frac{M}{2}$, which implies $M<2^{n+1}$.

But this contradicts the fact that M is an upper bound for B, so all $n \in \mathbb{N}, 2^{n} \leq M \Rightarrow \Leftarrow$
4.

Scratchwork: Notice that $3=1+2$, so by the binomial theorem, we get:

$$
\begin{aligned}
3^{n} & =(1+2)^{n} \\
& =1^{n}+n 1^{n-1} 2+\text { POSITIVE JUNK } \\
& =1+2 n+\text { POSITIVE JUNK } \\
& >2 n \\
& >M
\end{aligned}
$$

Which suggests $N=\frac{M}{2}$.
Actual Proof: Let $M>0$ be given and let $N=\frac{M}{2}$. Then if $n>N$, we have:

$$
\begin{aligned}
3^{n} & =(1+2)^{n} \\
& =1+2 n+\text { POSITIVE JUNK } \\
& >2 n \\
& >2\left(\frac{M}{2}\right) \\
& =M \checkmark
\end{aligned}
$$

Therefore $\lim _{n \rightarrow \infty} 3^{n}=\infty$

[^0]: Date: Friday, April 24, 2020.

