MATH 140A - MOCK MIDTERM 1 - SOLUTIONS

1.

STEP 1: First of all, if $s \in A + B$, then s = a + b where $a \in A$ and $b \in B$, but by definition of $\sup(A)$ we get $a \leq \sup(A)$ and similarly $b \leq \sup(B)$, hence

$$s = a + b \le \sup(A) + \sup(B)$$

Since s was arbitrary, $\sup(A) + \sup(B)$ is an upper bound for A+B, so because $\sup(A+B)$ is the *least* upper bound for A+B, we get

$$\sup(A+B) \le \sup(A) + \sup(B)\checkmark$$

STEP 2: Fix $a \in A$, then for every $b \in B$, since $a + b \in A + B$ and by definition of $\sup(A + B)$, we get:

$$a + b \le \sup(A + B)$$
$$a \le \sup(A + B) - b$$

But since $a \in A$ is arbitrary, $\sup(A + B) - b$ is an upper bound for A, and hence since $\sup(A)$ is the *least* upper bound:

$$\sup(A) \le \sup(A+B) - b$$
$$b \le \sup(A+B) - \sup(A)$$

Date: Friday, April 24, 2020.

But since $b \in B$ is arbitrary, $\sup(A + B) - \sup(A)$ is an upper bound for B, so since $\sup(B)$ is the *least* upper bound:

$$\sup(B) \le \sup(A+B) - \sup(A)$$
$$\sup(A) + \sup(B) \le \sup(A+B)\checkmark$$

Therefore $\sup(A + B) = \sup(A) + \sup(B)$.

2.

STEP 1: Scratchwork

Since (s_n) converges, (s_n) is bounded above, so there is M > 0such that $|s_n| \leq M$ for all n.,

$$(s_n)^2 - s^2 \bigg| = |s_n - s| |s_n + s| \leq |s_n - s| (|s_n| + |s|) \leq |s_n - s| (M + |s|) < \epsilon$$

Which gives:

$$|s_n - s| < \frac{\epsilon}{M + |s|}$$

STEP 2: Actual Proof

First of all, since (s_n) converges, (s_n) is bounded, so there is M > 0 such that $|s_n| \leq M$ for all n.

Let $\epsilon > 0$ be given

Then since $s_n \to s$ there is N such that for all n > N, $|s_n - s| < \frac{\epsilon}{M+|s|}$

With that same N, if n > N, we get:

$$\begin{aligned} \left| (s_n)^2 - s^2 \right| &= |s_n - s| |s_n + s| \\ &\leq |s_n - s| (|s_n| + |s|) \\ &\leq |s_n - s| (M + |s|) \\ &< \left(\frac{\epsilon}{M + |s|}\right) (M + |s|) \\ &= \epsilon \checkmark \end{aligned}$$

Therefore $(s_n)^2$ converges to s^2

3.

Suppose by contradiction that $\sup(B) = M$ where $M < \infty$. Since B has at least one positive term, we may assume M > 0

Now consider $M_1 = \frac{M}{2} < M$ (since M > 0). By definition of sup this means there is $2^n \in B$ such that $2^n > \frac{M}{2}$, which implies $M < 2^{n+1}$.

But this contradicts the fact that M is an upper bound for B, so all $n \in \mathbb{N}, 2^n \leq M \Rightarrow \Leftarrow$ 4.

Scratchwork: Notice that 3 = 1 + 2, so by the binomial theorem, we get:

$$3^{n} = (1+2)^{n}$$

=1ⁿ + n1ⁿ⁻¹2 + POSITIVE JUNK
=1 + 2n + POSITIVE JUNK
>2n
>M

Which suggests $N = \frac{M}{2}$.

Actual Proof: Let M > 0 be given and let $N = \frac{M}{2}$. Then if n > N, we have:

$$3^{n} = (1+2)^{n}$$

=1+2n + POSITIVE JUNK
>2n
>2 $\left(\frac{M}{2}\right)$
= $M\checkmark$

Therefore $\lim_{n\to\infty} 3^n = \infty$

 $\mathbf{6}$