MATH 140A - MOCK MIDTERM 2 - SOLUTIONS

1. STEP 1 By assumption with $r=1$, we know that $(s-1, s+1)$ has infinitely many terms of $\left(s_{n}\right)$, hence it must include at least one term, let's call it $s_{n_{1}}$ Hence $s_{n_{1}} \in(s-1, s+1)$

STEP 2 Suppose you defined $s_{n_{1}}, s_{n_{2}}, \ldots, s_{n_{k}}$ with $n_{1}<n_{2}<$ $\cdots<n_{k}$ such that $s_{n_{j}} \in\left(s-\frac{1}{j}, s+\frac{1}{j}\right)$ for all $j=1, \ldots, k$
By assumption with $r=\frac{1}{k+1},\left(s-\frac{1}{k+1}, s+\frac{1}{k+1}\right)$ has infinitely many terms of $\left(s_{n}\right)$, hence it must include at least one term different from $s_{1}, s_{2}, \ldots, s_{n_{k}}$. Let's call that term $s_{n_{k+1}}$. So $s_{n_{k+1}} \in\left(r-\frac{1}{k+1}, r+\frac{1}{k+1}\right)$ and $n_{k+1}>n_{k}$ because otherwise $s_{n_{k+1}}$ would be one of the terms $s_{1}, s_{2}, \ldots, s_{n_{k}} \Rightarrow \Leftarrow \checkmark$

STEP 3 Therefore we have constructed a subsequence $\left(s_{n_{k}}\right)$ such that $s_{n_{k}} \in\left(s-\frac{1}{k}, s+\frac{1}{k}\right)$ for all k, so $\left|s_{n_{k}}-s\right|<\frac{1}{k}$.

Claim: $s_{n_{k}} \rightarrow s$

Let $\epsilon>0$ be given, let $K=\frac{1}{\epsilon}$, then if $k>K$, we have:

$$
\left|s_{n_{k}}-s\right|<\frac{1}{k}<\frac{1}{K}=\frac{1}{\left(\frac{1}{\epsilon}\right)}=\epsilon
$$

2. STEP 1: Let $\epsilon>0$ be such that $\alpha<\alpha+\epsilon<1$. Then, by assumption

$$
\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}=\lim _{N \rightarrow \infty} \sup \left\{\left.\left|a_{n}\right|^{\frac{1}{n}} \right\rvert\, n>N\right\}=\alpha
$$

By definition of a limit, this means that there is N_{1} such that if $N>N_{1}$, then

$$
\begin{aligned}
\left|\sup \left\{\left.\left|a_{n}\right|^{\frac{1}{n}} \right\rvert\, n>N\right\}-\alpha\right|<\epsilon \Rightarrow & \sup \left\{\left.\left|a_{n}\right|^{\frac{1}{n}} \right\rvert\, n>N\right\}-\alpha<\epsilon \\
& \Rightarrow \sup \left\{\left.\left|a_{n}\right|^{\frac{1}{n}} \right\rvert\, n>N\right\}<\alpha+\epsilon
\end{aligned}
$$

Since this is true for all $N>N_{1}$, it is in particular true for some N. By definition of sup, this means that for all $n>N$, we have: $\left|a_{n}\right|^{\frac{1}{n}}<\alpha+\epsilon$

STEP 2: But then, if $n>N$, we have: $\left|a_{n}\right|<(\alpha+\epsilon)^{n}$
Therefore

$$
\sum_{n=N+1}^{\infty}\left|a_{n}\right| \leq \sum_{n=N+1}^{\infty}(\alpha+\epsilon)^{n}=\sum_{n=N+1}^{\infty} r^{n}
$$

But the latter is just a geometric series with $r=\alpha+\epsilon<1$, so converges, and therefore, by the comparison test, $\sum_{n=N+1}^{\infty}\left|a_{n}\right|$ converges, and so

$$
\sum\left|a_{n}\right|=\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{N}\right|+\sum_{n=N+1}^{\infty}\left|a_{n}\right| \text { converges }
$$

Hence $\sum\left|a_{n}\right|$ converges, so $\sum a_{n}$ converges absolutely.
3. STEP 1: Let $\left(x^{(n)}\right)=\left(x_{1}^{n}, x_{2}^{n}\right)$ be a Cauchy sequence in \mathbb{R}^{2}. Then for all $\epsilon>0$ there is N such that if $m, n>N$

$$
d\left(x^{(n)}, x^{(m)}\right)=\left|x_{1}^{n}-x_{1}^{m}\right|+\left|x_{2}^{n}-x_{2}^{n}\right|<\epsilon
$$

But then, in particular, if $m, n>N$, then

$$
\left|x_{1}^{n}-x_{1}^{m}\right| \leq\left|x_{1}^{n}-x_{1}^{m}\right|+\left|x_{2}^{n}-x_{2}^{n}\right|<\epsilon
$$

And

$$
\left|x_{2}^{n}-x_{2}^{m}\right| \leq\left|x_{1}^{n}-x_{1}^{m}\right|+\left|x_{2}^{n}-x_{2}^{n}\right|<\epsilon
$$

So $\left(x_{1}^{n}\right)$ and $\left(x_{2}^{n}\right)$ are Cauchy sequences in \mathbb{R}

STEP 2: Therefore, since \mathbb{R} is complete, $\left(x_{1}^{n}\right)$ and $\left(x_{2}^{n}\right)$ converge to some x_{1} and x_{2} in \mathbb{R}. Let $x=\left(x_{1}, x_{2}\right)$

STEP 3: Claim: $\left(x^{(n)}\right)$ converges to x.

Let $\epsilon>0$ be given, then since $x_{1}^{n} \rightarrow x_{1}$ there is N_{1} such that if $n>N_{1}$, then $\left|x_{1}^{n}-x_{1}\right|<\frac{\epsilon}{2}$

And since $x_{2}^{(n)} \rightarrow x_{2}$ there is N_{2} such that if $n>N_{2}$, then $\left|x_{2}^{n}-x_{2}\right|<\frac{\epsilon}{2}$

Now let $N=\max \left\{N_{1}, N_{2}\right\}$, then if $n>N$, we get:

$$
d\left(x^{(n)}, x\right)=\left|x_{1}^{n}-x_{1}\right|+\left|x_{2}^{n}-x_{2}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \checkmark
$$

4. STEP 1: Let's show $\overline{E^{c}} \subseteq\left(E^{\circ}\right)^{c}$

Suppose $x \in \overline{E^{c}}$, then there is a sequence $\left(s_{n}\right)$ in E^{c} that converges to x. Since $s_{n} \in E^{c}$, we must have $s_{n} \notin E$

Since $s_{n} \rightarrow x$, for all $r>0$ there is N such that if $n>N$, then $d\left(s_{n}, x\right)<r \Rightarrow s_{n} \in B(x, r)$

But then this means that for all $r>0, B(x, r) \nsubseteq E$ because $B(x, r)$ contains at least one element s_{n} that is not in E.

So by definition of $E^{\circ}, x \notin E^{\circ}$, so $x \in\left(E^{\circ}\right)^{c} \checkmark$

STEP 2: Let's show $\left(E^{\circ}\right)^{c} \subseteq \overline{E^{c}}$.

Suppose $x \in\left(E^{\circ}\right)^{c}$, so $x \notin E^{\circ}$, and therefore for every $r>0$, $B(x, r) \nsubseteq E$, which means for every $r>0, B(x, r)$ must contain at least one element not in E.

But with $r=\frac{1}{n}$, this means that $B\left(x, \frac{1}{n}\right)$ must contain at least one element, call it s_{n} in E^{c}.

Claim: $s_{n} \rightarrow x$

Let $\epsilon>0$ be given, let $N=\frac{1}{\epsilon}$, then if $n>N$, we have

$$
d\left(s_{n}, x\right)<\frac{1}{n}<\frac{1}{N}=\frac{1}{\frac{1}{\epsilon}}=\epsilon
$$

(the first inequality follows from $s_{n} \in B\left(x, \frac{1}{n}\right)$)

But then, since $\left(s_{n}\right)$ is a sequence in E^{c} that converges to x, we get $x \in \overline{E^{c}} \checkmark$
4. (a) Let E and F be compact subsets of S, and suppose \mathcal{U} is an open cover of $E \cup F$. We want to show that \mathcal{U} has a finite sub-cover.

But since $E \subseteq E \cup F, \mathcal{U}$ covers E. Hence, since E is compact, there is a finite sub-cover $\mathcal{V}_{1}=\left\{U_{1}^{1}, \ldots, U_{N_{1}}^{1}\right\}$ of \mathcal{U}

Similarly, since $F \subseteq E \cup F, \mathcal{U}$ covers F. Hence, since F is compact, there is a finite sub-cover $\mathcal{V}_{2}=\left\{U_{1}^{2}, \ldots, U_{N_{2}}^{2}\right\}$ of U

Let $\mathcal{V}=\mathcal{V}_{1} \cup \mathcal{V}_{2}$, then \mathcal{V} is a subset of \mathcal{U} that has at most $N_{1}+N_{2}$ elements, hence is finite. Moreover, \mathcal{V} covers $E \cup F$, because if $x \in E \cup F$, then either $x \in E$, so there is $U_{k}^{1} \in \mathcal{V}$ with $x \in U_{k}^{1}$, or $x \in F$, so there is $U_{k}^{2} \in \mathcal{V}$ with $x \in U_{k}^{2}$.

Hence \mathcal{V} is a finite sub-cover of \mathcal{U}, and therefore \mathcal{U} has a finite sub-cover. Hence $E \cup F$ is compact
(b) Suppose E and F are compact subsets of S, then in particular E and F are closed. But then $E \cup F$ is closed, so $E \cup F$ is a closed subset of a compact set E, and hence $E \cap F$ is compact.

