MATH 140A – MOCK MIDTERM 2 – SOLUTIONS

1. **STEP 1** By assumption with r = 1, we know that (s - 1, s + 1) has infinitely many terms of (s_n) , hence it must include at least one term, let's call it s_{n_1} Hence $s_{n_1} \in (s - 1, s + 1)$

STEP 2 Suppose you defined $s_{n_1}, s_{n_2}, \ldots, s_{n_k}$ with $n_1 < n_2 < \cdots < n_k$ such that $s_{n_j} \in \left(s - \frac{1}{j}, s + \frac{1}{j}\right)$ for all $j = 1, \ldots, k$

By assumption with $r = \frac{1}{k+1}$, $\left(s - \frac{1}{k+1}, s + \frac{1}{k+1}\right)$ has infinitely many terms of (s_n) , hence it must include at least one term different from $s_1, s_2, \ldots, s_{n_k}$. Let's call that term $s_{n_{k+1}}$. So $s_{n_{k+1}} \in \left(r - \frac{1}{k+1}, r + \frac{1}{k+1}\right)$ and $n_{k+1} > n_k$ because otherwise $s_{n_{k+1}}$ would be one of the terms $s_1, s_2, \ldots, s_{n_k} \Rightarrow \ll \checkmark$

STEP 3 Therefore we have constructed a subsequence (s_{n_k}) such that $s_{n_k} \in (s - \frac{1}{k}, s + \frac{1}{k})$ for all k, so $|s_{n_k} - s| < \frac{1}{k}$.

Claim: $s_{n_k} \to s$

Let $\epsilon > 0$ be given, let $K = \frac{1}{\epsilon}$, then if k > K, we have:

$$|s_{n_k} - s| < \frac{1}{k} < \frac{1}{K} = \frac{1}{\left(\frac{1}{\epsilon}\right)} = \epsilon \quad \Box$$

Date: Monday, May 18, 2020.

2. **STEP 1:** Let $\epsilon > 0$ be such that $\alpha < \alpha + \epsilon < 1$. Then, by assumption

$$\limsup_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{N \to \infty} \sup\left\{ |a_n|^{\frac{1}{n}} \mid n > N \right\} = \alpha$$

By definition of a limit, this means that there is N_1 such that if $N > N_1$, then

$$\left|\sup\left\{|a_{n}|^{\frac{1}{n}} \mid n > N\right\} - \alpha\right| < \epsilon \Rightarrow \sup\left\{|a_{n}|^{\frac{1}{n}} \mid n > N\right\} - \alpha < \epsilon$$
$$\Rightarrow \sup\left\{|a_{n}|^{\frac{1}{n}} \mid n > N\right\} < \alpha + \epsilon$$

Since this is true for all $N > N_1$, it is in particular true for some N. By definition of sup, this means that for all n > N, we have: $|a_n|^{\frac{1}{n}} < \alpha + \epsilon$

STEP 2: But then, if n > N, we have: $|a_n| < (\alpha + \epsilon)^n$ Therefore

$$\sum_{n=N+1}^{\infty} |a_n| \le \sum_{n=N+1}^{\infty} (\alpha + \epsilon)^n = \sum_{n=N+1}^{\infty} r^n$$

But the latter is just a geometric series with $r = \alpha + \epsilon < 1$, so converges, and therefore, by the comparison test, $\sum_{n=N+1}^{\infty} |a_n|$ converges, and so

$$\sum |a_n| = |a_1| + |a_2| + \dots + |a_N| + \sum_{n=N+1}^{\infty} |a_n| \text{ converges}$$

Hence $\sum |a_n|$ converges, so $\sum a_n$ converges absolutely.

3. **STEP 1:** Let $(x^{(n)}) = (x_1^n, x_2^n)$ be a Cauchy sequence in \mathbb{R}^2 . Then for all $\epsilon > 0$ there is N such that if m, n > N

$$d\left(x^{(n)}, x^{(m)}\right) = |x_1^n - x_1^m| + |x_2^n - x_2^n| < \epsilon$$

But then, in particular, if m, n > N, then

$$|x_1^n - x_1^m| \le |x_1^n - x_1^m| + |x_2^n - x_2^n| < \epsilon$$

And

$$|x_2^n - x_2^m| \le |x_1^n - x_1^m| + |x_2^n - x_2^n| < \epsilon$$

So (x_1^n) and (x_2^n) are Cauchy sequences in \mathbb{R}

STEP 2: Therefore, since \mathbb{R} is complete, (x_1^n) and (x_2^n) converge to some x_1 and x_2 in \mathbb{R} . Let $x = (x_1, x_2)$

STEP 3: Claim: $(x^{(n)})$ converges to x.

Let $\epsilon > 0$ be given, then since $x_1^n \to x_1$ there is N_1 such that if $n > N_1$, then $|x_1^n - x_1| < \frac{\epsilon}{2}$

And since $x_2^{(n)} \to x_2$ there is N_2 such that if $n > N_2$, then $|x_2^n - x_2| < \frac{\epsilon}{2}$

Now let $N = \max \{N_1, N_2\}$, then if n > N, we get:

$$d(x^{(n)}, x) = |x_1^n - x_1| + |x_2^n - x_2| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \checkmark \square$$

4. **STEP 1:** Let's show $\overline{E^c} \subseteq (E^\circ)^c$

Suppose $x \in \overline{E^c}$, then there is a sequence (s_n) in E^c that converges to x. Since $s_n \in E^c$, we must have $s_n \notin E$

Since $s_n \to x$, for all r > 0 there is N such that if n > N, then $d(s_n, x) < r \Rightarrow s_n \in B(x, r)$

But then this means that for all r > 0, $B(x, r) \not\subseteq E$ because B(x, r) contains at least one element s_n that is not in E.

So by definition of E° , $x \notin E^{\circ}$, so $x \in (E^{\circ})^{c} \checkmark$

STEP 2: Let's show $(E^{\circ})^c \subseteq \overline{E^c}$.

Suppose $x \in (E^{\circ})^c$, so $x \notin E^{\circ}$, and therefore for every r > 0, $B(x, r) \not\subseteq E$, which means for every r > 0, B(x, r) must contain at least one element not in E.

But with $r = \frac{1}{n}$, this means that $B\left(x, \frac{1}{n}\right)$ must contain at least one element, call it s_n in E^c .

Claim: $s_n \to x$

Let $\epsilon > 0$ be given, let $N = \frac{1}{\epsilon}$, then if n > N, we have

$$d\left(s_{n},x\right) < \frac{1}{n} < \frac{1}{N} = \frac{1}{\frac{1}{\epsilon}} = \epsilon$$

(the first inequality follows from $s_n \in B\left(x, \frac{1}{n}\right)$)

But then, since (s_n) is a sequence in E^c that converges to x, we get $x \in \overline{E^c} \checkmark$

4. (a) Let E and F be compact subsets of S, and suppose \mathcal{U} is an open cover of $E \cup F$. We want to show that \mathcal{U} has a finite sub-cover.

But since $E \subseteq E \cup F$, \mathcal{U} covers E. Hence, since E is compact, there is a finite sub-cover $\mathcal{V}_1 = \{U_1^1, \ldots, U_{N_1}^1\}$ of \mathcal{U}

Similarly, since $F \subseteq E \cup F$, \mathcal{U} covers F. Hence, since F is compact, there is a finite sub-cover $\mathcal{V}_2 = \{U_1^2, \ldots, U_{N_2}^2\}$ of \mathcal{U}

Let $\mathcal{V} = \mathcal{V}_1 \cup \mathcal{V}_2$, then \mathcal{V} is a subset of \mathcal{U} that has at most $N_1 + N_2$ elements, hence is finite. Moreover, \mathcal{V} covers $E \cup F$, because if $x \in E \cup F$, then either $x \in E$, so there is $U_k^1 \in \mathcal{V}$ with $x \in U_k^1$, or $x \in F$, so there is $U_k^2 \in \mathcal{V}$ with $x \in U_k^2$.

Hence \mathcal{V} is a finite sub-cover of \mathcal{U} , and therefore \mathcal{U} has a finite sub-cover. Hence $E \cup F$ is compact \Box

(b) Suppose E and F are compact subsets of S, then in particular E and F are closed. But then $E \cup F$ is closed, so $E \cup F$ is a closed subset of a compact set E, and hence $E \cap F$ is compact.