
MATH 140A − MOCK MIDTERM 2 − SOLUTIONS

1. STEP 1 By assumption with r = 1, we know that (s−1, s+ 1)
has infinitely many terms of (sn), hence it must include at least
one term, let’s call it sn1 Hence sn1 ∈ (s− 1, s+ 1)

STEP 2 Suppose you defined sn1, sn2, . . . , snk with n1 < n2 <

· · · < nk such that snj ∈
(
s− 1

j , s+ 1
j

)
for all j = 1, . . . , k

By assumption with r = 1
k+1 ,

(
s− 1

k+1 , s+ 1
k+1

)
has infinitely

many terms of (sn), hence it must include at least one term
different from s1, s2, . . . , snk. Let’s call that term snk+1

. So
snk+1

∈
(
r − 1

k+1 , r + 1
k+1

)
and nk+1 > nk because otherwise

snk+1
would be one of the terms s1, s2, . . . , snk ⇒⇐ X

STEP 3 Therefore we have constructed a subsequence (snk)
such that snk ∈

(
s− 1

k , s+ 1
k

)
for all k, so |snk − s| < 1

k .

Claim: snk → s

Let ε > 0 be given, let K = 1
ε , then if k > K, we have:

|snk − s| <
1

k
<

1

K
=

1(
1
ε

) = ε �
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2. STEP 1: Let ε > 0 be such that α < α + ε < 1. Then, by
assumption

lim sup
n→∞

|an|
1
n = lim

N→∞
sup

{
|an|

1
n | n > N

}
= α

By definition of a limit, this means that there is N1 such that if
N > N1, then

∣∣∣sup
{
|an|

1
n | n > N

}
− α

∣∣∣ < ε⇒ sup
{
|an|

1
n | n > N

}
− α < ε

⇒ sup
{
|an|

1
n | n > N

}
< α + ε

Since this is true for all N > N1, it is in particular true for some
N . By definition of sup, this means that for all n > N , we have:

|an|
1
n < α + ε

STEP 2: But then, if n > N , we have: |an| < (α + ε)n

Therefore

∞∑
n=N+1

|an| ≤
∞∑

n=N+1

(α + ε)n =
∞∑

n=N+1

rn

But the latter is just a geometric series with r = α + ε < 1, so
converges, and therefore, by the comparison test,

∑∞
n=N+1 |an|

converges, and so∑
|an| = |a1|+ |a2|+ · · ·+ |aN |+

∞∑
n=N+1

|an| converges

Hence
∑
|an| converges, so

∑
an converges absolutely. �



MATH 140A − MOCK MIDTERM 2 − SOLUTIONS 3

3. STEP 1: Let (x(n)) = (xn1 , x
n
2) be a Cauchy sequence in R2.

Then for all ε > 0 there is N such that if m,n > N

d
(
x(n), x(m)

)
= |xn1 − xm1 |+ |xn2 − xn2 | < ε

But then, in particular, if m,n > N , then

|xn1 − xm1 | ≤ |xn1 − xm1 |+ |xn2 − xn2 | < ε

And

|xn2 − xm2 | ≤ |xn1 − xm1 |+ |xn2 − xn2 | < ε

So (xn1) and (xn2) are Cauchy sequences in R

STEP 2: Therefore, since R is complete, (xn1) and (xn2) con-
verge to some x1 and x2 in R. Let x = (x1, x2)

STEP 3: Claim: (x(n)) converges to x.

Let ε > 0 be given, then since xn1 → x1 there is N1 such that if
n > N1, then |xn1 − x1| < ε

2

And since x
(n)
2 → x2 there is N2 such that if n > N2, then

|xn2 − x2| < ε
2

Now let N = max {N1, N2}, then if n > N , we get:

d
(
x(n), x

)
= |xn1 − x1|+ |xn2 − x2| <

ε

2
+
ε

2
= εX �
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4. STEP 1: Let’s show Ec ⊆ (E◦)c

Suppose x ∈ Ec, then there is a sequence (sn) in Ec that con-
verges to x. Since sn ∈ Ec, we must have sn /∈ E

Since sn → x, for all r > 0 there is N such that if n > N , then
d(sn, x) < r ⇒ sn ∈ B(x, r)

But then this means that for all r > 0, B(x, r)��⊆E because
B(x, r) contains at least one element sn that is not in E.

So by definition of E◦, x /∈ E◦, so x ∈ (E◦)c X

STEP 2: Let’s show (E◦)c ⊆ Ec.

Suppose x ∈ (E◦)c, so x /∈ E◦, and therefore for every r > 0,
B(x, r)��⊆E, which means for every r > 0, B(x, r) must contain
at least one element not in E.

But with r = 1
n , this means that B

(
x, 1n
)

must contain at least
one element, call it sn in Ec.

Claim: sn → x

Let ε > 0 be given, let N = 1
ε , then if n > N , we have

d (sn, x) <
1

n
<

1

N
=

1
1
ε

= ε
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(the first inequality follows from sn ∈ B
(
x, 1n
)
)

But then, since (sn) is a sequence in Ec that converges to x, we
get x ∈ Ec X �
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4. (a) Let E and F be compact subsets of S, and suppose U is an
open cover of E ∪ F . We want to show that U has a finite
sub-cover.

But since E ⊆ E ∪ F , U covers E. Hence, since E is com-
pact, there is a finite sub-cover V1 =

{
U 1
1 , . . . , U

1
N1

}
of U

Similarly, since F ⊆ E ∪ F , U covers F . Hence, since F is
compact, there is a finite sub-cover V2 =

{
U 2
1 , . . . , U

2
N2

}
of

U

Let V = V1 ∪ V2, then V is a subset of U that has at most
N1+N2 elements, hence is finite. Moreover, V covers E∪F ,
because if x ∈ E ∪F , then either x ∈ E, so there is U 1

k ∈ V
with x ∈ U 1

k , or x ∈ F , so there is U 2
k ∈ V with x ∈ U 2

k .

Hence V is a finite sub-cover of U , and therefore U has a
finite sub-cover. Hence E ∪ F is compact �

(b) Suppose E and F are compact subsets of S, then in partic-
ular E and F are closed. But then E∪F is closed, so E∪F
is a closed subset of a compact set E, and hence E ∩ F is
compact.


