In this set of notes, we will explore another fascinating facet of topology, namely continuity and connectedness.

1. CONTINUITY IN METRIC SPACES

Video: Metric Space Continuity

The definition of continuity can be generalized to metric spaces

Definition:

If (S, d) and (S', d') are metric spaces with $f: S \to S'$

Then f is **continuous** at $x_0 \in S$ if for all $\epsilon > 0$ there is $\delta > 0$ such that for all x,

$$d(x, x_0) < \delta \Rightarrow d'(f(x), f(x_0)) < \epsilon$$

f is **continuous** if f is continuous at x_0 for all $x_0 \in S$

Problem 1: Let (S, d) be any metric space, and consider (\mathbb{R}^k, d') where d' is the usual metric:

$$d'((x_1, \dots, x_k), (y_1, \dots, y_k)) = \sqrt{\sum_{j=1}^k (y_j - x_j)^2}$$

Show that $f = (f_1, \ldots, f_k) : S \to \mathbb{R}^k$ is continuous if and only if each component $f_j : S \to \mathbb{R}$ is continuous (where \mathbb{R} is equipped with the

usual metric).

Solution: (\Rightarrow) Let $\epsilon > 0$ be given, then there is $\delta > 0$ such that if $d(x, x_0) < \delta$, then $d'(f(x), f(x_0)) < \epsilon$.

But, with that same δ , if $d(x, x_0) < \delta$, then for each j,

$$|f_j(x) - f_j(x_0)| = \sqrt{(f_j(x) - f_j(x_0))^2} \le \sqrt{\sum_{j=1}^k (f_j(x) - f_j(x_0))^2} < \epsilon \checkmark$$

Hence f_j is continuous.

(\Leftarrow) Let $\epsilon > 0$ be given, then for each j, there is $\delta_j > 0$ such that if $d(x, x_0) < \delta_j$, then $|f_j(x) - f_j(x_0)| < \frac{\epsilon}{\sqrt{k}}$

Let $\delta = \min \{\delta_1, \ldots, \delta_k\} > 0$, then if $d(x, x_0) < \delta$, then

$$d(f(x), f(x_0)) = \sqrt{\sum_{j=1}^k (f_j(x) - f_j(x_0))} < \sqrt{\sum_{j=1}^k \left(\frac{\epsilon}{\sqrt{k}}\right)^2} = \sqrt{\sum_{j=1}^k \frac{\epsilon^2}{k}}$$
$$= \sqrt{k\left(\frac{\epsilon^2}{k}\right)} = \sqrt{\epsilon^2} = \epsilon \checkmark$$

Hence f is continuous

Problem 2: Let (S, d) be \mathbb{R} equipped with the discrete metric

$$d(x,y) = \begin{cases} 1 \text{ if } x = y \\ 0 \text{ if } x \neq y \end{cases}$$

And let (S', d') be any metric space. Show that any function $f: S \to S'$ must be continuous

Video: Every function is continuous

Solution: Let $\epsilon > 0$ be given, let $\delta = \frac{1}{2}$, then if $d(x, x_0) < \delta = \frac{1}{2} < 1$, then $x = x_0$, and therefore

$$d'(f(x), f(x_0)) = d'(f(x_0), f(x_0)) = 0 < \epsilon \checkmark$$

Hence any f is continuous

Problem 3: This problem is taken from the Berkeley Pre-lim, which is an exam given to first year graduate students at Berkeley, and is therefore quite challenging \odot

Suppose that $f: \mathbb{R}^k \to \mathbb{R}$ (with their usual metrics) satisfies the following two conditions:

- (1) For each compact set K, f(K) is compact
- (2) For any nested decreasing sequence of compact sets $K_1 \supseteq K_2 \supseteq K_3 \supseteq \ldots$, we have

$$f\left(\bigcap K_n\right) = \bigcap f(K_n)$$

Show that f is continuous

Video: Berkeley Prelim Problem

Solution: STEP 1: Fix $x_0 \in \mathbb{R}^k$ and let $\epsilon > 0$ be given. Let $K_n = \overline{B(x_0, \frac{1}{n})}$, notice that the K_n are decreasing, and therefore, by (2), we have

$$\bigcap_{n=1}^{\infty} f(K_n) = f\left(\bigcap_{n=1}^{\infty} K_n\right) = f(\lbrace x_0 \rbrace) = \lbrace f(x_0) \rbrace$$

STEP 2: Let $B = B(f(x_0), \epsilon) = (f(x_0) - \epsilon, f(x_0) + \epsilon).$

Then, first of all

$$\bigcap (f(K_n) \setminus B) = \left(\bigcap f(K_n)\right) \cap B^c = \{f(x_0)\} \setminus B = \emptyset$$

(because $f(x_0)$ is in B)

On the other hand, since K_n is compact, by (1), $f(K_n)$ is compact and hence closed, and so $f(K_n) \setminus B = f(K_n) \cap B^c$ is closed. And since the K_n are decreasing, the $f(K_n)$ are decreasing, and so is $f(K_n) \setminus B$.

Now if for all n, $(f(K_n) \setminus B) \neq \emptyset$, then by the finite intersection property we would have $\bigcap (f(K_n) \setminus B) \neq \emptyset$, which contradicts the above.

Therefore, for some N, $f(K_N) \setminus B = f(K_n) \cap B^c = \emptyset$.

STEP 3: But this implies that $f(K_N) \subseteq B$, and therefore, if $|x - x_0| < \frac{1}{N} \leq \frac{1}{N}$, then $x \in \overline{B(x_0, \frac{1}{N})} = K_N$, and so $f(x) \in f(K_N) \subseteq B = B(f(x_0), \epsilon)$, meaning $|f(x) - f(x_0)| < \epsilon$. In other words

$$|x - x_0| < \frac{1}{N} \Rightarrow |f(x) - f(x_0)| < \epsilon$$

STEP 4: Now given $\epsilon > 0$, let $\delta < \frac{1}{N}$ as above, then if $|x - x_0| < \delta < \frac{1}{N}$, then $|f(x) - f(x_0)| < \epsilon$, and therefore f is continuous at x_0 , and hence is continuous.

2. Continuity in Topology

Video: Topological Continuity

There is a way of talking about continuity without mentioning $\epsilon - \delta$ or sequences at all. This is the one commonly used in topology:

Definition:

If $f : \mathbb{R} \to \mathbb{R}$, and U is any subset of \mathbb{R} , then the **pre-image** $f^{-1}(U)$ is defined by

$$x \in f^{-1}(U) \Leftrightarrow f(x) \in U$$

Note: The above definition works for *any* function f, not just invertible ones!

Example: f(x) = 2x + 3, then $f^{-1}((5,9)) = (1,3)$ because

$$x \in f^{-1}((5,9)) \Leftrightarrow f(x) \in (5,9)$$
$$\Leftrightarrow 5 < 2x + 3 < 9$$
$$\Leftrightarrow 2 < 2x < 6$$
$$\Leftrightarrow 1 < x < 3$$

Problem 4: Calculate $f^{-1}(U)$ for the following functions f and the following sets U

(a) f(x) = 3x + 7, U = (7, 10)

(b)
$$f(x) = x^2$$
, $U = (-1, 4)$
(c) $f(x) = \sin(x)$, $U = (0, 1)$

Note: Observe that in all of the examples, both U and $f^{-1}(U)$ are open! This is precisely because f is continuous (in topology, this is taken as the *definition* of continuity, since it only involves open sets)

Solution:

(a)

$$x \in f^{-1}((7,10)) \Leftrightarrow f(x) \in (7,10)$$

$$\Leftrightarrow 7 < 3x + 7 < 10$$

$$\Leftrightarrow 0 < 3x < 3$$

$$\Leftrightarrow 0 < x < 1$$

Hence $f^{-1}(U) = (0, 1)$

(b)

$$x \in f^{-1}((-1,4)) \Leftrightarrow f(x) \in (-1,4)$$
$$\Leftrightarrow -1 < x^2 < 4$$
$$\Leftrightarrow -2 < x < 2$$

Hence $f^{-1}(U) = (-2, 2)$

(c)

$$x \in f^{-1}((0,1)) \Leftrightarrow f(x) \in (0,1)$$

$$\Leftrightarrow 0 < \sin(x) < 1$$

$$\Leftrightarrow x \in \left(2\pi m, 2\pi m + \frac{\pi}{2}\right) \cup \left(2\pi m + \frac{\pi}{2}, (2m+1)\pi\right), m \in \mathbb{Z}$$

6

Hence

$$f^{-1}((0,1)) = \bigcup_{m \in \mathbb{Z}} \left(2\pi m, 2\pi m + \frac{\pi}{2} \right) \cup \left(2\pi m + \frac{\pi}{2}, (2m+1)\pi \right)$$

Fact:

 $f:\mathbb{R}\to\mathbb{R}$ is continuous if and only if

$$U$$
 is open $\Rightarrow f^{-1}(U)$ is open

Problem 5: Prove this fact

Solution: (\Rightarrow) Suppose f is continuous and let U be open. We want to show $f^{-1}(U)$ is open.

Let $x_0 \in f^{-1}(U)$. Then, by definition $f(x_0) \in U$. Since U is open, there is $\epsilon > 0$ such that $(f(x_0) - \epsilon, f(x_0) + \epsilon) \subseteq U$

However, since f is continuous, there is $\delta > 0$ such that if $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < \epsilon$.

Claim: $(x_0 - \delta, x_0 + \delta) \subseteq f^{-1}(U)$

(Then we're done because this shows $f^{-1}(U)$ is open)

Suppose $x \in (x_0 - \delta, x_0 + \delta)$, then $f(x) \in (f(x_0) - \epsilon, f(x_0) + \epsilon) \subseteq U$, and so $f(x) \in U$ and so $x \in f^{-1}(U) \checkmark$

(\Leftarrow) Suppose $f^{-1}(U)$ is open whenever U is open, and let's show f is continuous.

Fix x_0 Let $\epsilon > 0$ be given, then notice that $U = (f(x_0) - \epsilon, f(x_0) + \epsilon)$ is open, and therefore, by assumption, $f^{-1}(U)$ is open.

Moreover, since $f(x_0) \in U$, $x_0 \in f^{-1}(U)$ (which is open), and therefore, by definition, there is $\delta > 0$ such that $(x_0 - \delta, x_0 + \delta) \subseteq f^{-1}(U)$

But then, with that δ if $|x - x_0| < \delta$, then $x \in (x_0 - \delta, x_0 + \delta)$ and so $x \in f^{-1}(U)$, which means $f(x) \in U = (f(x_0) - \epsilon, f(x_0) + \epsilon)$, so $|f(x) - f(x_0)| < \epsilon$, and so f is continuous at x_0 , and hence continuous \checkmark

Problem 6: To illustrate the elegance of the above definition, let's give a quick proof of the fact that composition of continuous functions are continuous

(a) If f and g are any functions (not necessarily invertible), prove that

$$(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$$

(b) Use (a) and the definition above to show that if f and g are continuous, then $g \circ f$ is continuous

Solution:

(a)

$$x \in (g \circ f)^{-1}(U) \Leftrightarrow (g \circ f)(x) \in U$$
$$\Leftrightarrow g(f(x)) \in U$$
$$\Leftrightarrow f(x) \in g^{-1}(U)$$
$$\Leftrightarrow x \in f^{-1}(g^{-1}(U))$$

(b) Suppose U is open, then since g is continuous, $g^{-1}(U)$ is open, and hence, since f is continuous, $f^{-1}(g^{-1}(U))$ is open, and therefore

$$(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$$
 is open \checkmark

Hence $g \circ f$ is continuous

Problem 7: Prove that, for any function f and any sets A and B, we have

(a)
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

(b) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$
(c) $f^{-1}(A^c) = (f^{-1}(A))^c$

Solution:

(a)

$$x \in f^{-1}(A \cup B) \Leftrightarrow f(x) \in A \cup B$$
$$\Leftrightarrow (f(x) \in A) \text{ or } (f(x) \in B)$$
$$\Leftrightarrow (x \in f^{-1}(A)) \text{ or } (x \in f^{-1}(B))$$
$$\Leftrightarrow x \in f^{-1}(A) \cup f^{-1}(B)$$

(b)

$$\begin{aligned} x \in f^{-1}(A \cap B) \Leftrightarrow f(x) \in A \cap B \\ \Leftrightarrow (f(x) \in A) \text{ and } (f(x) \in B) \\ \Leftrightarrow (x \in f^{-1}(A)) \text{ and } (x \in f^{-1}(B)) \\ \Leftrightarrow x \in f^{-1}(A) \cap f^{-1}(B) \end{aligned}$$

(c)

$$x \in f^{-1}(A^c) \Leftrightarrow f(x) \in A^c$$

$$\Leftrightarrow f(x) \notin A$$

$$\Leftrightarrow \text{Not} \ (f(x) \in A)$$

$$\Leftrightarrow \text{Not} \ (x \in f^{-1}(A))$$

$$\Leftrightarrow x \notin f^{-1}(A)$$

$$\Leftrightarrow x \in (f^{-1}(A))^c$$

Definition:

Given a function f and a subset A of \mathbb{R} , we define

$$f(A) = \{f(x) \mid x \in A\}$$

Problem 8: Here's a nice exercise using compactness and pre-images

- (a) Show that if K is (covering) compact and f is continuous, then f(K) is (compact)
- (b) Is there a continuous function f with domain [0, 1] and range (0, 1)?
- (c) Show that any continuous function from [a, b] to \mathbb{R} must be bounded

Video: Continuity and Compactness

Solutions:

(a) **STEP 1:** Let $\mathcal{U} = \{U_{\alpha}\}$ be an open cover of f(K), and consider $\mathcal{U}' = \{f^{-1}(U_{\alpha})\}$.

STEP 2: Then, since U_{α} is open and f is continuous, $f^{-1}(U_{\alpha})$ is open.

Moreover, by an analog of the above problem, we have

$$\bigcup_{\alpha} f^{-1}(U_{\alpha}) = f^{-1}\left(\bigcup_{\alpha} U_{\alpha}\right)$$

And, since \mathcal{U} covers f(K), we have $K \subseteq \bigcup_{\alpha} U_{\alpha}$ and so $f^{-1}(\bigcup_{\alpha} U_{\alpha}) \supseteq f^{-1}(f(K))$

And finally $K \subseteq f^{-1}(f(K))$ since if $x \in K$, then $f(x) \in f(K)$ and so $x \in f^{-1}(f(K))$.

Therefore, combining everything, we get

$$\bigcup_{\alpha} f^{-1}\left(U_{\alpha}\right) \supset K$$

STEP 3: So \mathcal{U}' covers K. But since K is compact, there is a finite sub-cover

$$\mathcal{V}' = \left\{ f^{-1}(U_{n_1}), \dots, f^{-1}(U_{n_N}) \right\}$$

STEP 4:

$$\mathcal{V} =: \{U_{n_1}, \ldots, U_{n_N}\}$$

Covers K

Claim:

(Then we're done because we found a finite sub-cover of \mathcal{U})

But if $y \in f(K)$, then y = f(x) for some $x \in K$, but since \mathcal{V} covers $K, x \in f^{-1}(U_{n_k})$ for some k, and so $y = f(x) \in U_{n_k} \in \mathcal{V}$ \checkmark

- (b) No since [0,1] is compact, and so f([0,1]) would be compact, but f([0,1]) = (0,1), which is not compact
- (c) Since [a, b] is compact and f is continuous, f([a, b]) is compact, and therefore bounded, which means that f is bounded (that is there is M > 0 such that $|f(x)| \le M$ for all $x \in [a, b]$)

Problem 9: Give a quick proof of the Extreme Value Theorem: If K is a compact subset of \mathbb{R} and $f: K \to \mathbb{R}$ is continuous, then f attains a maximum and a minimum

Solution: Since K is compact, and f is continuous, f(K) is compact by the problem above. Since f(K) is compact, it is closed and bounded, and therefore it has a least upper bound $M = \sup(f(K))$

Let (y_n) be a sequence in f(K) converging to M. By definition of f(K), $y_n = f(x_n)$ for some $x_n \in K$ But since K is (covering) compact, K is sequentially compact, and therefor (x_n) has a convergent subsequence (x_{n_k}) that converges to some $x_0 \in K$

But since f is continuous, we get $f(x_{n_k}) \to f(x_0)$.

But then since y_n converges to M, the subsequence $y_{n_k} = f(x_{n_k})$ converges to M, so by uniqueness of limits, $f(x_0) = M$, so f has a maximum M at $x_0 \in K$, and similarly f has a minimum m at some other point.

3. Connectedness

Video: Connectedness

Definition:

Let E be any subset of \mathbb{R} (or of any metric space)

- (1) E is **disconnected** if there are disjoint, nonempty, and open subsets A and B of E such that $A \cup B = E$
- (2) E is **connected** if it is not disconnected

For example, \mathbb{R} is connected but $(0,1) \cup (2,3)$ is disconnected

Problem 10: Give a short proof of the Intermediate Value Theorem: If $f : [a, b] \to \mathbb{R}$ is continuous and c is between f(a) and f(b), then there is $x \in [a, b]$ with f(x) = c. Isn't connectedness awesome?

Solution: Suppose not, then there is c such that $f(x) \neq c$ for all $x \in [a, b]$. This means that for all x, either f(x) > c or f(x) < c, and therefore $[a, b] = A \cup B$ where

$$A = \{x \in [a, b] \mid f(x) < c\} = f^{-1}((-\infty, c))$$
$$B = \{x \in [a, b] \mid f(x) > c\} = f^{-1}((c, \infty))$$

Now $A \cup B = \emptyset$ and A and B are nonempty since either f(a) or f(b) are in A or B

Moreover, A and B are open since f is continuous and $(-\infty, c)$ and (c, ∞) are open.

And therefore $[a, b] = A \cup B$ with A and B nonempty, open, and disjoint, which contradicts the fact that [a, b] is connected. $\Rightarrow \Leftarrow \Box$

Problem 11: Suppose *E* is connected and $f : E \to \mathbb{R}$ is continuous, prove that f(E) is connected.

Suppose E is connected by f(E) is not connected. Then there are A and B nonempty, open, and disjoint with $f(E) = A \cup B$.

But now consider $A' = f^{-1}(A)$ and $B' = f^{-1}(B)$. Then, since A and B are open and f is continuous, we get A' and B' are open. Moreover:

$$A' \cap B' = f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B) = f^{-1}(A \cap B) = f^{-1}(\emptyset) = \emptyset$$

$$A' \cup B' = f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \cup B) = f^{-1}(f(E)) = E$$

(The latter follows because for all $x \in E$, $f(x) \in f(E)$ and therefore $x \in f^{-1}(f(E))$)

Finally, since A is nonempty there is $a \in A \subseteq f(E)$ and therefore there is $a' \in E$ with $f(a') \in A$ and so $a' \in f^{-1}(A) = A'$ and so A' is nonempty, and similarly B' is nonempty.

Therefore A' and B' are disjoint, nonempty, and open subsets of E with $A' \cup B' = E$, but this implies that E is disconnected $\Rightarrow \Leftarrow$

Problem 12: Prove that \mathbb{R} is connected. More generally, it follows that any interval I is connected.

Video: \mathbb{R} is connected

Solution: Suppose \mathbb{R} is not connected. Then we can write $\mathbb{R} = A \cup B$ with A, B nonempty, open and disjoint.

STEP 1: Since A and B are nonempty, fix $a \in A$ and $b \in B$. WLOG a < b ($a \neq b$ since A and B are disjoint) and consider

$$S = \{x \in [a, b] \mid [a, x] \subseteq A\}$$

Then S is nonempty since $a \in S$ and moreover S is bounded above by b, hence S has a least upper bound $M = \sup(S)$

STEP 2:

Claim: $M \notin B$

Suppose $M \in B$. Then since B is open, there is r > 0 such that $(M - r, M + r) \subseteq B$.

Since $M - r < M = \sup(S)$, there is $x \in S$ such that x > M - r. Since $x \in S$, we get $[a, x] \subseteq A$, and so $x \in A$. But, on the other hand $x \in (M - r, M] \subseteq (M - r, M + r) \subseteq B$, and therefore $x \in A \cap B = \emptyset \Rightarrow \Leftarrow$. Hence, since $M \notin B$ and $A \cup B = \mathbb{R}$, we must have $M \in A$

STEP 3: Moreover $M \in S$, because if $M \notin S$, then $[a, M] \not\subseteq A$, meaning there is $x \in [a, M]$ with $x \notin A$. But since $M \in A$, we have $x < M = \sup(S)$ and therefore there is $y \in S$ with y > x. But by definition of S, we have $[a, y] \subseteq A$ and so, since x < y we get $[a, x] \subseteq [a, y] \subseteq A$, which is a contradiction since $x \notin A$.

STEP 4: Now M < b, because if $b \le M$, then we get a contradiction because, since $M \in S$, we have $[a, M] \subseteq A$ and so $b \in [a, M] \subseteq A$ so

 $b \in A \Rightarrow \Leftarrow$

STEP 5:

Claim: $M \notin A$

Suppose $M \in A$, then, since A is open, there is r' > 0 such that $(M - r', M + r') \subseteq A$. Let $M' = \min\{M + r', b\}$

Then M' > M, and so $M' \notin S$ because $M = \sup(S)$.

Therefore, by definition of S, $[a, M'] \not\subseteq A$, so there is some $x \in [a, M']$ with $x \notin A$. But since $[a, M] \subseteq A$ (because $M \in S$), we must have $x \in (M, M']$. Moreover, $x \neq M + r'$ (because $M + r' \in A$ but $x \notin A$), and therefore $x \in (M, M + r') \subseteq A$, so $x \in A \Rightarrow \Leftarrow$.

Hence $M \notin A$ either, and therefore M is neither in A or in B, which contradicts $\mathbb{R} = A \cup B \Rightarrow \Leftarrow$.

Definition:

Let E be any subset of \mathbb{R} (or of any metric space)

- (1) A **path** in E is a continuous function $\gamma : [0, 1] \to E$
- (2) E is **path-connected** if for any pair of points a and b in E, there is a path γ with $\gamma(0) = a$ and $\gamma(1) = b$

Problem 13:

(a) Show that if E is path-connected, then it is connected

(b) Show \mathbb{R} is path-connected and deduce that it is connected.

Solution: For (a), suppose E is path-connected but not connected. Since E is not connected, there are A and B, nonempty, open, and disjoint such that $A \cup B = E$.

Since A and B are nonempty, there is $a \in A$ and $b \in B$.

Since γ is path-connected, there is a path $\gamma : [0, 1] \to E$ with $\gamma(0) = a$ and $\gamma(1) = b$

Now consider $A' = \gamma^{-1}(A)$ and $B' = \gamma^{-1}(B)$. Then since A and B are open and γ is continuous, we get A' and B' are open.

Moreover $0 \in A'$ since $\gamma(0) = a \in A$ and therefore A' is nonempty, and similarly B' is nonempty, and finally

$$A' \cap B' = \gamma^{-1}(A' \cap B') = \gamma^{-1}(A') \cap \gamma^{-1}(B') = A \cap B = \emptyset$$

$$A' \cup B' = \gamma^{-1}(A' \cup B') = \gamma^{-1}(A') \cup \gamma^{-1}(B') = A \cup B = [0, 1]$$

But therefore A' and B' are disjoint, open, nonempty subsets of [0, 1] whose union in [0, 1], which contradicts that [0, 1] is connected $\Rightarrow \Leftarrow$.

Hence E must be connected

For (b), let $a, b \in \mathbb{R}$ and consider the path $\gamma(t) = (1 - t)a + tb$, which is continuous and has values in \mathbb{R} and $\gamma(0) = a$ and $\gamma(1) = b \checkmark$

Problem 14: The topologist's sine curve is defined as

$$E = F \cup G =: \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) \mid x \in (0, 1] \right\} \cup \{\{0\} \times [-1, 1]\}$$

Show that E is connected but not path-connected.

Video: Topologist Sine Curve

Solution: Note: The solutions here are taken from this handout

Proof that E is connected:

Claim: If F is connected subset of \mathbb{R}^2 , then \overline{F} is connected

Proof: The result is true of $F = \emptyset$, so assume $F \neq \emptyset$.

Suppose F is connected but \overline{F} is not connected. Then there are open nonempty disjoint subsets A and B of \overline{F} such that $A \cup B = \overline{F}$.

Consider $A' = A \cap F$ and $B' = B \cap F$. Then A' and B' are open in F, disjoint, and their union is F. But since F is connected, we must have A' = F and $B' = \emptyset$ or $A' = \emptyset$ and B' = F.

WLOG, assume A' = F and $B' = \emptyset$

Notice that, since $A^c = B$ is open (the complement here is in \overline{F}) we get A is closed in \overline{F} , hence there is some closed subset C of \mathbb{R}^2 with $A = C \cap \overline{F}$

But then $F = A' \subseteq A \subseteq C$, and since \overline{F} is the smallest closed subset containing F, we get $\overline{F} \subseteq C$, and hence

$$A = C \cap \overline{F} = \overline{F}$$

And since A is disjoint from B, we must get that $B = \emptyset \Rightarrow \Leftarrow$. \Box

To show that our topologist sine curve is connected, let

$$F = \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) \mid x \in (0, 1] \right\}$$

Then F is connected since it is path-connected (for a and b in (0, 1], just consider the path $\gamma(t) = \left((1-t)a + tb, \sin\left(\frac{1}{(1-t)a+tb}\right)\right)$), and moreover $\overline{F} = E$ (since $\sin\left(\frac{1}{x}\right)$ has the intermediate value property on \mathbb{R}), and therefore by the Claim, E is connected

Proof that *E* is not path-connected: Suppose not, then in particular is there is $\gamma : [0, 1] \to E$ with $\gamma(0) \in F$ and $\gamma(1) \in G$.

Because G is just a straight line (which is path-connected), we may assume $\gamma(1) = (0, 1)$.

Let $\epsilon = \frac{1}{2}$, then by continuity of γ at 1, there is $\delta > 0$ such that

If
$$|t-1| \le \delta \Rightarrow 1-\delta \le t \le 1$$
, then
 $|\gamma(t) - \gamma(1)| < \frac{1}{2} \Rightarrow |\gamma(t) - (0,1)| < \frac{1}{2}$

(Note: Here the absolute value for γ is just the usual distance in \mathbb{R}^2 . Also the $\leq \delta$ isn't really a problem)

Let $\gamma(1-\delta) =: (x_0, y_0)$ and remember that $\gamma(1) = (0, 1)$

Since $\gamma = (\gamma_1, \gamma_2)$ is continuous, the first component γ_1 is continuous, and therefore, by the Intermediate Value Theorem, γ_1 attains all the values between $\gamma_1(1 - \delta) = x_0$ and $\gamma_1(1) = 0$, and hence $\gamma_1([1 - \delta, 1])$ contains the interval $[0, x_0]$

Hence for all $x_1 \in (0, x_0]$ there is some t with $\gamma_1(t) = x_1$ and therefore, by definition, there is $t \in [1 - \gamma, 1]$ such that

$$\gamma(t) = (\gamma_1(t), \gamma_2(t)) = \left(x_1, \sin\left(\frac{1}{x_1}\right)\right)$$

But now let $x_1 = \frac{1}{2\pi n - \frac{\pi}{2}}$, then for *n* large enough we have $0 < x_1 < x_0$, but $\sin\left(\frac{1}{x_1}\right) = \sin\left(-\frac{\pi}{2}\right) = -1$ Hence the point $\left(\frac{1}{2\pi n - \frac{\pi}{2}}, -1\right)$ has the form f(t) for some $t \in [1 - \delta, 1]$ and hence *t* is a distance of $\frac{1}{2}$ away from (0, 1), which contradicts the fact that the distance between $\left(\frac{1}{2\pi n - \frac{\pi}{2}}, -1\right)$ and (0, 1) is at least 2

4. Homeomorphisms

Video: Homeomorphism

Definition:

Let A and B be two subsets of \mathbb{R} (or any two metric spaces) and $f: A \to B$ is a function, then:

- (a) f is a **homeomorphism** if f is continuous, one-to-one, onto, and f^{-1} is continuous
- (b) A and B are **homeomorphic** if there is a homemorphism between A and B
- (c) A **topological property** is a property that is preserved under homeomorphisms

Problem 15:

- (a) Show that there is a homeomorphism between (0, 1) and \mathbb{R} . So surprisingly (0, 1) and \mathbb{R} are homeomorphic
- (b) Deduce that boundedness is not a topological property.

Solution: For (a), consider $f: (0,1) \to \mathbb{R}$ defined by

$$f(x) = \tan^{-1}\left(\pi x - \frac{\pi}{2}\right)$$

Then, one can check that $g(x) = \pi x - \frac{\pi}{2}$ is continuous, one-to-one, and onto, and its inverse is continuous and therefore a homeomorphism.

Also since $\tan : \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$ is continuous and one-to-one and onto \mathbb{R} (you can show this using the fact that $\tan(x) \to \pm \infty$ near $\pm \frac{\pi}{2}$ and an analog of the Intermediate Value Theorem), its inverse \tan^{-1} is continuous, and therefore a homeomorphism

Hence f(x) is a homeomorphism, being a composition of two homeomorphisms, and therefore (0, 1) and \mathbb{R} are homeomorphic.

For (b), since (0, 1) is bounded but \mathbb{R} is unbounded, boundedness is not a topological property.

Problem 16:

- (a) Show that if $f: I \to f(I)$ is continuous and one-to-one, then f is a homeomorphism
- (b) Show that if K is covering compact and $f : K \to f(K)$ is continuous and one-to-one, then f is a homeomorphism
- (c) Let S^1 be the unit circle in \mathbb{R}^2 . Consider the map $f: [0, 2\pi) \to S^1$ by $f(t) = (\cos(t), \sin(t))$. You may assume that f is continuous, one-to-one, and onto. Show that f^{-1} is not continuous and hence not a homeomorphism.

Solution:

- (a) By assumption, f is continuous, one-to-one, and onto its image f(I). Moreover, we have shown in class that f^{-1} is continuous, hence f is a homeomorphism.
- (b) Since f is continuous, one-to-one, and onto its image, it suffices to show that f^{-1} is continuous.

Claim: f is continuous if and only if for each closed set $C, f^{-1}(C)$ is closed

This follows because if f is continuous and C is closed, then C^c is open, and therefore $f^{-1}(C^c)$ is open, hence $(f^{-1}(C))^c$ is open, so $f^{-1}(C)$ is closed \checkmark

Conversely, if $f^{-1}(C)$ is closed whenever C is closed, then if U is any open set, then U^c is closed, so by assumption $f^{-1}(U^c)$ is closed, and therefore $(f^{-1}(U))^c$ is closed, and so $f^{-1}(U)$ is open, so f is continuous \checkmark

Now suppose C is an arbitrary closed subset of K, then since K is compact, C is a closed subset of a compact set, and hence compact. Therefore, since C is compact and f is continuous, f(C) is compact, and hence closed.

Therefore, whenever C is closed, f(C) is closed, and by the claim below, it follows that $(f^{-1})^{-1}(C) = f(C)$ is closed, and so f^{-1} is continuous since f was arbitrary

Claim: $(f^{-1})^{-1}(C) = f(C)$

Proof:

$$x \in (f^{-1})^{-1}(C) \Leftrightarrow f^{-1}(x) \in C$$
$$\Leftrightarrow f(f^{-1}(x)) \in f(C)$$
$$\Leftrightarrow x \in f(C) \checkmark \Box$$

(c) Let

$$(x_n) = \left(\cos\left(2\pi - \frac{1}{n}\right), \sin\left(2\pi - \frac{1}{n}\right)\right)$$

Then (x_n) converges to (1,0), but $f^{-1}(x_n) = 2\pi - \frac{1}{n}$ converges to $2\pi \neq f^{-1}((1,0)) = 0$.

Hence f^{-1} is not continuous.

Problem 17:

- (a) Show that homeomorphisms map compact sets onto compact sets. Hence compactness is a topological property. Deduce that [0, 1] and ℝ are not homeomorphic
- (b) Show that homeomorphisms map connected sets onto connected sets. So connectedness is a topological property. Deduce that $[0, 2\pi]$ and the unit circle S^1 in \mathbb{R}^2 are not homeomorphic
- (c) Show openness and closedness are topological properties. Deduce that (0, 1) and [0, 1] (considered as subsets of \mathbb{R}) are not homeomorphic

Solution:

- (a) This just follows because if K is compact and f is continuous, then f(K) is compact. Therefore, since [0, 1] is compact but \mathbb{R} is not compact, the two spaces are not homeomorphic.
- (b) This just follows because if E is connected and f is continuous, then f(E) is connected.

It is not hard to show that if $f : E \to F$ is a homeomorphism and $x_0 \in E$, then $f : E \setminus \{x_0\} \to F \setminus \{f(x_0)\}$ is also a homeomorphism.

Now if $[0, 2\pi]$ and S^1 were homeomorphic with homeomorphism f, then $[0, 2\pi] \setminus \{1\}$ and $S^1 \setminus \{f(1)\}$ would also be a homeomorphism. But this can't be because $[0, 2\pi] \setminus \{1\} = [0, 1) \cup (1, 2\pi]$ is disconnected, whereas S^1 minus a point is still connected! $\Rightarrow \Leftarrow$

(c) Suppose A is open and f is a homemomorphism, then $f(A) = (f^{-1})^{-1}(A)$ is open since f^{-1} is continuous and A is open. Similarly, if B is closed, then $f(B) = (f^{-1})^{-1}(B)$ is closed since f^{-1} is continuous and B is closed

Now Since (0, 1) is open in \mathbb{R} and [0, 1] is not open in \mathbb{R} , those two cannot be homeomorphic.