
MORE TOPOLOGY

In this set of notes, we will explore another fascinating facet of topol-
ogy, namely continuity and connectedness.

1. Continuity in Metric Spaces

Video: Metric Space Continuity

The definition of continuity can be generalized to metric spaces

Definition:

If (S, d) and (S ′, d′) are metric spaces with f : S → S ′

Then f is continuous at x0 ∈ S if for all ϵ > 0 there is δ > 0
such that for all x,

d(x, x0) < δ ⇒ d′(f(x), f(x0)) < ϵ

f is continuous if f is continuous at x0 for all x0 ∈ S

Problem 1: Let (S, d) be any metric space, and consider (Rk, d′)
where d′ is the usual metric:

d′((x1, . . . , xk), (y1, . . . , yk)) =

√√√√ k∑
j=1

(yj − xj)2

Show that f = (f1, . . . , fk) : S → Rk is continuous if and only if each
component fj : S → R is continuous (where R is equipped with the
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https://youtu.be/WTbcJYBLxAs
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usual metric).

Solution: (⇒) Let ϵ > 0 be given, then there is δ > 0 such that if
d(x, x0) < δ, then d′(f(x), f(x0)) < ϵ.

But, with that same δ, if d(x, x0) < δ, then for each j,

|fj(x)− fj(x0)| =
√
(fj(x)− fj(x0))

2 ≤

√√√√ k∑
j=1

(fj(x)− fj(x0))
2 < ϵ✓

Hence fj is continuous.

(⇐) Let ϵ > 0 be given, then for each j, there is δj > 0 such that if
d(x, x0) < δj, then |fj(x)− fj(x0)| < ϵ√

k

Let δ = min {δ1, . . . , δk} > 0, then if d(x, x0) < δ, then

d(f(x), f(x0)) =

√√√√ k∑
j=1

(fj(x)− fj(x0)) <

√√√√ k∑
j=1

(
ϵ√
k

)2

=

√√√√ k∑
j=1

ϵ2

k

=

√
k

(
ϵ2

k

)
=

√
ϵ2 = ϵ✓

Hence f is continuous □

Problem 2: Let (S, d) be R equipped with the discrete metric

d(x, y) =

{
1 if x = y

0 if x ̸= y
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And let (S ′, d′) be any metric space. Show that any function f : S → S ′

must be continuous

Video: Every function is continuous

Solution: Let ϵ > 0 be given, let δ = 1
2 , then if d(x, x0) < δ = 1

2 < 1,
then x = x0, and therefore

d′(f(x), f(x0)) = d′(f(x0), f(x0)) = 0 < ϵ✓

Hence any f is continuous □

Problem 3: This problem is taken from the Berkeley Pre-lim, which
is an exam given to first year graduate students at Berkeley, and is
therefore quite challenging ,

Suppose that f : Rk → R (with their usual metrics) satisfies the fol-
lowing two conditions:

(1) For each compact set K, f(K) is compact

(2) For any nested decreasing sequence of compact sets K1 ⊇ K2 ⊇
K3 ⊇ . . . , we have

f
(⋂

Kn

)
=
⋂

f(Kn)

Show that f is continuous

Video: Berkeley Prelim Problem

https://youtu.be/9tMAEaDcJkc
https://youtu.be/qtghXGOfIxo
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Solution: STEP 1: Fix x0 ∈ Rk and let ϵ > 0 be given. Let Kn =

B(x0,
1
n), notice that the Kn are decreasing, and therefore, by (2), we

have

∞⋂
n=1

f (Kn) = f

( ∞⋂
n=1

Kn

)
= f ({x0}) = {f(x0)}

STEP 2: Let B = B(f(x0), ϵ) = (f(x0)− ϵ, f(x0) + ϵ).

Then, first of all

⋂
(f(Kn)\B) =

(⋂
f(Kn)

)
∩Bc = {f(x0)} \B = ∅

(because f(x0) is in B)

On the other hand, since Kn is compact, by (1), f(Kn) is compact and
hence closed, and so f(Kn)\B = f(Kn) ∩ Bc is closed. And since the
Kn are decreasing, the f(Kn) are decreasing, and so is f(Kn)\B.

Now if for all n, (f(Kn)\B) ̸= ∅, then by the finite intersection prop-
erty we would have

⋂
(f(Kn)\B) ̸= ∅, which contradicts the above.

Therefore, for some N , f(KN)\B = f(Kn) ∩Bc = ∅.

STEP 3: But this implies that f(KN) ⊆ B, and therefore, if |x− x0| <
1
N ≤ 1

N , then x ∈ B(x0,
1
N ) = KN , and so f(x) ∈ f(KN) ⊆ B =

B(f(x0), ϵ), meaning |f(x)− f(x0)| < ϵ. In other words

|x− x0| <
1

N
⇒ |f(x)− f(x0)| < ϵ
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STEP 4: Now given ϵ > 0, let δ < 1
N as above, then if |x− x0| < δ <

1
N , then |f(x)− f(x0)| < ϵ, and therefore f is continuous at x0, and
hence is continuous. □

2. Continuity in Topology

Video: Topological Continuity

There is a way of talking about continuity without mentioning ϵ − δ
or sequences at all. This is the one commonly used in topology:

Definition:

If f : R → R, and U is any subset of R, then the pre-image
f−1(U) is defined by

x ∈ f−1(U) ⇔ f(x) ∈ U

Note: The above definition works for any function f , not just invert-
ible ones!

Example: f(x) = 2x+ 3, then f−1((5, 9)) = (1, 3) because

x ∈ f−1((5, 9)) ⇔f(x) ∈ (5, 9)

⇔5 < 2x+ 3 < 9

⇔2 < 2x < 6

⇔1 < x < 3

Problem 4: Calculate f−1(U) for the following functions f and the
following sets U

(a) f(x) = 3x+ 7, U = (7, 10)

https://youtu.be/tZIKPwhFP3s
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(b) f(x) = x2, U = (−1, 4)

(c) f(x) = sin(x), U = (0, 1)

Note: Observe that in all of the examples, both U and f−1(U) are
open! This is precisely because f is continuous (in topology, this is
taken as the definition of continuity, since it only involves open sets)

Solution:

(a)

x ∈ f−1((7, 10)) ⇔f(x) ∈ (7, 10)

⇔7 < 3x+ 7 < 10

⇔0 < 3x < 3

⇔0 < x < 1

Hence f−1(U) = (0, 1)

(b)

x ∈ f−1((−1, 4)) ⇔f(x) ∈ (−1, 4)

⇔− 1 < x2 < 4

⇔− 2 < x < 2

Hence f−1(U) = (−2, 2)

(c)

x ∈ f−1((0, 1)) ⇔f(x) ∈ (0, 1)

⇔0 < sin(x) < 1

⇔x ∈
(
2πm, 2πm+

π

2

)
∪
(
2πm+

π

2
, (2m+ 1)π

)
,m ∈ Z
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Hence

f−1((0, 1)) =
⋃
m∈Z

(
2πm, 2πm+

π

2

)
∪
(
2πm+

π

2
, (2m+ 1)π

)
Fact:

f : R → R is continuous if and only if

U is open ⇒ f−1(U) is open

Problem 5: Prove this fact

Solution: (⇒) Suppose f is continuous and let U be open. We want
to show f−1(U) is open.

Let x0 ∈ f−1(U). Then, by definition f(x0) ∈ U . Since U is open,
there is ϵ > 0 such that (f(x0)− ϵ, f(x0) + ϵ) ⊆ U

However, since f is continuous, there is δ > 0 such that if |x− x0| < δ,
then |f(x)− f(x0)| < ϵ.

Claim: (x0 − δ, x0 + δ) ⊆ f−1(U)

(Then we’re done because this shows f−1(U) is open)

Suppose x ∈ (x0 − δ, x0 + δ), then f(x) ∈ (f(x0) − ϵ, f(x0) + ϵ) ⊆ U ,
and so f(x) ∈ U and so x ∈ f−1(U) ✓

(⇐) Suppose f−1(U) is open whenever U is open, and let’s show f is
continuous.
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Fix x0 Let ϵ > 0 be given, then notice that U = (f(x0)− ϵ, f(x0) + ϵ)
is open, and therefore, by assumption, f−1(U) is open.

Moreover, since f(x0) ∈ U , x0 ∈ f−1(U) (which is open), and there-
fore, by definition, there is δ > 0 such that (x0 − δ, x0 + δ) ⊆ f−1(U)

But then, with that δ if |x− x0| < δ, then x ∈ (x0 − δ, x0 + δ) and
so x ∈ f−1(U), which means f(x) ∈ U = (f(x0) − ϵ, f(x0) + ϵ), so
|f(x)− f(x0)| < ϵ, and so f is continuous at x0, and hence continuous
✓ □

Problem 6: To illustrate the elegance of the above definition, let’s
give a quick proof of the fact that composition of continuous functions
are continuous

(a) If f and g are any functions (not necessarily invertible), prove
that

(g ◦ f)−1 (U) = f−1(g−1(U))

(b) Use (a) and the definition above to show that if f and g are
continuous, then g ◦ f is continuous

Solution:

(a)
x ∈ (g ◦ f)−1(U) ⇔(g ◦ f)(x) ∈ U

⇔g(f(x)) ∈ U

⇔f(x) ∈ g−1(U)

⇔x ∈ f−1
(
g−1(U)

)
(b) Suppose U is open, then since g is continuous, g−1(U) is open,

and hence, since f is continuous, f−1
(
g−1(U)

)
is open, and

therefore
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(g ◦ f)−1 (U) = f−1
(
g−1(U)

)
is open ✓

Hence g ◦ f is continuous □

Problem 7: Prove that, for any function f and any sets A and B, we
have

(a) f−1(A ∪B) = f−1(A) ∪ f−1(B)

(b) f−1(A ∩B) = f−1(A) ∩ f−1(B)

(c) f−1(Ac) =
(
f−1(A)

)c
Solution:

(a)

x ∈ f−1(A ∪B) ⇔f(x) ∈ A ∪B

⇔ (f(x) ∈ A) or (f(x) ∈ B)

⇔
(
x ∈ f−1(A)

)
or
(
x ∈ f−1(B)

)
⇔x ∈ f−1(A) ∪ f−1(B)

(b)

x ∈ f−1(A ∩B) ⇔f(x) ∈ A ∩B

⇔ (f(x) ∈ A) and (f(x) ∈ B)

⇔
(
x ∈ f−1(A)

)
and

(
x ∈ f−1(B)

)
⇔x ∈ f−1(A) ∩ f−1(B)
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(c)
x ∈ f−1(Ac) ⇔f(x) ∈ Ac

⇔f(x) /∈ A

⇔ Not (f(x) ∈ A)

⇔ Not
(
x ∈ f−1(A)

)
⇔x /∈ f−1(A)

⇔x ∈
(
f−1(A)

)c
Definition:

Given a function f and a subset A of R, we define

f(A) = {f(x) | x ∈ A}

Problem 8: Here’s a nice exercise using compactness and pre-images

(a) Show that if K is (covering) compact and f is continuous, then
f(K) is (compact)

(b) Is there a continuous function f with domain [0, 1] and range
(0, 1) ?

(c) Show that any continuous function from [a, b] to R must be
bounded

Video: Continuity and Compactness

Solutions:

(a) STEP 1: Let U = {Uα} be an open cover of f(K), and con-
sider U ′ =

{
f−1 (Uα)

}
.

https://youtu.be/6Ql6TpnpwDE
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STEP 2: Then, since Uα is open and f is continuous, f−1 (Uα)
is open.

Moreover, by an analog of the above problem, we have⋃
α

f−1 (Uα) = f−1

(⋃
α

Uα

)

And, since U covers f(K), we haveK ⊆
⋃

α Uα and so f−1 (
⋃

α Uα) ⊇
f−1(f(K))

And finally K ⊆ f−1(f(K)) since if x ∈ K, then f(x) ∈ f(K)
and so x ∈ f−1(f(K)).

Therefore, combining everything, we get⋃
α

f−1 (Uα) ⊃ K

STEP 3: So U ′ covers K. But since K is compact, there is a
finite sub-cover

V ′ =
{
f−1(Un1

), . . . , f−1(UnN
)
}

STEP 4:

Claim:
V =: {Un1

, . . . , UnN
}

Covers K

(Then we’re done because we found a finite sub-cover of U)



12 MORE TOPOLOGY

But if y ∈ f(K), then y = f(x) for some x ∈ K, but since V
covers K, x ∈ f−1(Unk

) for some k, and so y = f(x) ∈ Unk
∈ V

✓ □

(b) No since [0, 1] is compact, and so f([0, 1]) would be compact,
but f([0, 1]) = (0, 1), which is not compact

(c) Since [a, b] is compact and f is continuous, f([a, b]) is compact,
and therefore bounded, which means that f is bounded (that is
there is M > 0 such that |f(x)| ≤ M for all x ∈ [a, b])

Problem 9: Give a quick proof of the Extreme Value Theorem: If K
is a compact subset of R and f : K → R is continuous, then f attains
a maximum and a minimum

Solution: Since K is compact, and f is continuous, f(K) is com-
pact by the problem above. Since f(K) is compact, it is closed and
bounded, and therefore it has a least upper bound M = sup(f(K))

Let (yn) be a sequence in f(K) converging to M . By definition of
f(K), yn = f(xn) for some xn ∈ K
But since K is (covering) compact, K is sequentially compact, and
therefor (xn) has a convergent subsequence (xnk

) that converges to
some x0 ∈ K

But since f is continuous, we get f(xnk
) → f(x0).

But then since yn converges to M , the subsequence ynk
= f(xnk

) con-
verges to M , so by uniqueness of limits, f(x0) = M , so f has a maxi-
mum M at x0 ∈ K, and similarly f has a minimum m at some other
point. □
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3. Connectedness

Video: Connectedness

Definition:

Let E be any subset of R (or of any metric space)

(1) E is disconnected if there are disjoint, nonempty, and
open subsets A and B of E such that A ∪B = E

(2) E is connected if it is not disconnected

For example, R is connected but (0, 1) ∪ (2, 3) is disconnected

Problem 10: Give a short proof of the Intermediate Value Theorem:
If f : [a, b] → R is continuous and c is between f(a) and f(b), then
there is x ∈ [a, b] with f(x) = c. Isn’t connectedness awesome?

Solution: Suppose not, then there is c such that f(x) ̸= c for all
x ∈ [a, b]. This means that for all x, either f(x) > c or f(x) < c, and
therefore [a, b] = A ∪B where

A = {x ∈ [a, b] | f(x) < c} = f−1((−∞, c))

B = {x ∈ [a, b] | f(x) > c} = f−1((c,∞))

Now A ∪ B = ∅ and A and B are nonempty since either f(a) or f(b)
are in A or B

Moreover, A and B are open since f is continuous and (−∞, c) and
(c,∞) are open.

https://youtu.be/-yMVjL-na-o
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And therefore [a, b] = A ∪ B with A and B nonempty, open, and dis-
joint, which contradicts the fact that [a, b] is connected. ⇒⇐ □

Problem 11: Suppose E is connected and f : E → R is continuous,
prove that f(E) is connected.

Suppose E is connected by f(E) is not connected. Then there are A
and B nonempty, open, and disjoint with f(E) = A ∪B.

But now consider A′ = f−1(A) and B′ = f−1(B). Then, since A and
B are open and f is continuous, we get A′ and B′ are open. Moreover:

A′ ∩B′ = f−1(A)∩ f−1(B) = f−1 (A ∩B) = f−1(A∩B) = f−1(∅) = ∅

A′ ∪B′ = f−1(A) ∪ f−1(B) = f−1 (A ∪B) = f−1(f(E)) = E

(The latter follows because for all x ∈ E, f(x) ∈ f(E) and therefore
x ∈ f−1 (f(E)))

Finally, since A is nonempty there is a ∈ A ⊆ f(E) and therefore
there is a′ ∈ E with f(a′) ∈ A and so a′ ∈ f−1(A) = A′ and so A′ is
nonempty, and similarly B′ is nonempty.

Therefore A′ and B′ are disjoint, nonempty, and open subsets of E
with A′ ∪B′ = E, but this implies that E is disconnected ⇒⇐

Problem 12: Prove that R is connected. More generally, it follows
that any interval I is connected.

Video: R is connected

https://youtu.be/bvIuMa6WTs4
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Solution: Suppose R is not connected. Then we can write R = A∪B
with A,B nonempty, open and disjoint.

STEP 1: Since A and B are nonempty, fix a ∈ A and b ∈ B. WLOG
a < b (a ̸= b since A and B are disjoint) and consider

S = {x ∈ [a, b] | [a, x] ⊆ A}

Then S is nonempty since a ∈ S and moreover S is bounded above by
b, hence S has a least upper bound M = sup(S)

STEP 2:

Claim: M /∈ B

Suppose M ∈ B. Then since B is open, there is r > 0 such that
(M − r,M + r) ⊆ B.

Since M−r < M = sup(S), there is x ∈ S such that x > M−r. Since
x ∈ S, we get [a, x] ⊆ A, and so x ∈ A. But, on the other hand x ∈
(M − r,M ] ⊆ (M − r,M + r) ⊆ B, and therefore x ∈ A∩B = ∅ ⇒⇐.
Hence, since M /∈ B and A ∪B = R, we must have M ∈ A

STEP 3: Moreover M ∈ S, because if M /∈ S, then [a,M ]��⊆A, mean-
ing there is x ∈ [a,M ] with x /∈ A. But since M ∈ A, we have
x < M = sup(S) and therefore there is y ∈ S with y > x. But
by definition of S, we have [a, y] ⊆ A and so, since x < y we get
[a, x] ⊆ [a, y] ⊆ A, which is a contradiction since x /∈ A.

STEP 4: Now M < b, because if b ≤ M , then we get a contradiction
because, since M ∈ S, we have [a,M ] ⊆ A and so b ∈ [a,M ] ⊆ A so
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b ∈ A ⇒⇐

STEP 5:

Claim: M /∈ A

Suppose M ∈ A, then, since A is open, there is r′ > 0 such that
(M − r′,M + r′) ⊆ A. Let M ′ = min {M + r′, b}

Then M ′ > M , and so M ′ /∈ S because M = sup(S).

Therefore, by definition of S, [a,M ′]��⊆A, so there is some x ∈ [a,M ′]
with x /∈ A. But since [a,M ] ⊆ A (because M ∈ S), we must have
x ∈ (M,M ′]. Moreover, x ̸= M + r′ (because M + r′ ∈ A but x /∈ A),
and therefore x ∈ (M,M + r′) ⊆ A, so x ∈ A ⇒⇐.

Hence M /∈ A either, and therefore M is neither in A or in B, which
contradicts R = A ∪B ⇒⇐. □

Definition:

Let E be any subset of R (or of any metric space)

(1) A path in E is a continuous function γ : [0, 1] → E

(2) E is path-connected if for any pair of points a and b in
E, there is a path γ with γ(0) = a and γ(1) = b

Problem 13:
(a) Show that if E is path-connected, then it is connected

(b) Show R is path-connected and deduce that it is connected.
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Solution: For (a), suppose E is path-connected but not connected.
Since E is not connected, there are A and B, nonempty, open, and
disjoint such that A ∪B = E.

Since A and B are nonempty, there is a ∈ A and b ∈ B.

Since γ is path-connected, there is a path γ : [0, 1] → E with γ(0) = a
and γ(1) = b

Now consider A′ = γ−1(A) and B′ = γ−1(B). Then since A and B are
open and γ is continuous, we get A′ and B′ are open.

Moreover 0 ∈ A′ since γ(0) = a ∈ A and therefore A′ is nonempty, and
similarly B′ is nonempty, and finally
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A′ ∩B′ =γ−1(A′ ∩B′) = γ−1(A′) ∩ γ−1(B′) = A ∩B = ∅
A′ ∪B′ =γ−1(A′ ∪B′) = γ−1(A′) ∪ γ−1(B′) = A ∪B = [0, 1]

But therefore A′ and B′ are disjoint, open, nonempty subsets of [0, 1]
whose union in [0, 1], which contradicts that [0, 1] is connected ⇒⇐.

Hence E must be connected

For (b), let a, b ∈ R and consider the path γ(t) = (1− t)a + tb, which
is continuous and has values in R and γ(0) = a and γ(1) = b ✓

Problem 14: The topologist’s sine curve is defined as

E = F ∪G =:

{(
x, sin

(
1

x

))
| x ∈ (0, 1]

}
∪ {{0} × [−1, 1]}

Show that E is connected but not path-connected.

Video: Topologist Sine Curve

Solution: Note: The solutions here are taken from this handout

Proof that E is connected:

Claim: If F is connected subset of R2, then F is connected

Proof: The result is true of F = ∅, so assume F ̸= ∅.

https://youtu.be/pi-sS3lgszA
http://math.stanford.edu/~conrad/diffgeomPage/handouts/sinecurve.pdf
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Suppose F is connected but F is not connected. Then there are open
nonempty disjoint subsets A and B of F such that A ∪B = F .

Consider A′ = A ∩ F and B′ = B ∩ F . Then A′ and B′ are open in
F , disjoint, and their union is F . But since F is connected, we must
have A′ = F and B′ = ∅ or A′ = ∅ and B′ = F .

WLOG, assume A′ = F and B′ = ∅

Notice that, since Ac = B is open (the complement here is in F ) we
get A is closed in F , hence there is some closed subset C of R2 with
A = C ∩ F

But then F = A′ ⊆ A ⊆ C, and since F is the smallest closed subset
containing F , we get F ⊆ C, and hence

A = C ∩ F = F

And since A is disjoint from B, we must get that B = ∅ ⇒⇐. □

To show that our topologist sine curve is connected, let

F =

{(
x, sin

(
1

x

))
| x ∈ (0, 1]

}
Then F is connected since it is path-connected (for a and b in (0, 1], just

consider the path γ(t) =
(
(1− t)a+ tb, sin

(
1

(1−t)a+tb

))
), and moreover

F = E (since sin
(
1
x

)
has the intermediate value property on R), and

therefore by the Claim, E is connected

Proof that E is not path-connected: Suppose not, then in partic-
ular is there is γ : [0, 1] → E with γ(0) ∈ F and γ(1) ∈ G.
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Because G is just a straight line (which is path-connected), we may
assume γ(1) = (0, 1).

Let ϵ = 1
2 , then by continuity of γ at 1, there is δ > 0 such that

If |t− 1| ≤ δ ⇒ 1− δ ≤ t ≤ 1, then

|γ(t)− γ(1)| < 1

2
⇒ |γ(t)− (0, 1)| < 1

2

(Note: Here the absolute value for γ is just the usual distance in R2.
Also the ≤ δ isn’t really a problem)

Let γ(1− δ) =: (x0, y0) and remember that γ(1) = (0, 1)

Since γ = (γ1, γ2) is continuous, the first component γ1 is continuous,
and therefore, by the Intermediate Value Theorem, γ1 attains all the
values between γ1(1 − δ) = x0 and γ1(1) = 0, and hence γ1([1 − δ, 1])
contains the interval [0, x0]

Hence for all x1 ∈ (0, x0] there is some t with γ1(t) = x1 and therefore,
by definition, there is t ∈ [1− γ, 1] such that

γ(t) = (γ1(t), γ2(t)) =

(
x1, sin

(
1

x1

))
But now let x1 =

1
2πn−π

2
, then for n large enough we have 0 < x1 < x0,

but sin
(

1
x1

)
= sin

(
−π

2

)
= −1

Hence the point
(

1
2πn−π

2
,−1

)
has the form f(t) for some t ∈ [1− δ, 1]

and hence t is a distance of 1
2 away from (0, 1), which contradicts the

fact that the distance between
(

1
2πn−π

2
,−1

)
and (0, 1) is at least 2
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⇒⇐ □

4. Homeomorphisms

Video: Homeomorphism

Definition:

Let A and B be two subsets of R (or any two metric spaces) and
f : A → B is a function, then:

(a) f is a homeomorphism if f is continuous, one-to-one,
onto, and f−1 is continuous

(b) A and B are homeomorphic if there is a homemorphism
between A and B

(c) A topological property is a property that is preserved
under homeomorphisms

Problem 15:
(a) Show that there is a homeomorphism between (0, 1) and R. So

surprisingly (0, 1) and R are homeomorphic

(b) Deduce that boundedness is not a topological property.

Solution: For (a), consider f : (0, 1) → R defined by

f(x) = tan−1
(
πx− π

2

)
Then, one can check that g(x) = πx− π

2 is continuous, one-to-one, and
onto, and its inverse is continuous and therefore a homeomorphism.

https://youtu.be/40S3yeDwwYc
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Also since tan :
(
−π

2 ,
π
2

)
→ R is continuous and one-to-one and onto R

(you can show this using the fact that tan(x) → ±∞ near ±π
2 and an

analog of the Intermediate Value Theorem), its inverse tan−1 is con-
tinuous, and therefore a homeomorphism

Hence f(x) is a homeomorphism, being a composition of two homeo-
morphisms, and therefore (0, 1) and R are homeomorphic.

For (b), since (0, 1) is bounded but R is unbounded, boundedness is
not a topological property.

Problem 16:

(a) Show that if f : I → f(I) is continuous and one-to-one, then f
is a homeomorphism

(b) Show that if K is covering compact and f : K → f(K) is
continuous and one-to-one, then f is a homeomorphism

(c) Let S1 be the unit circle in R2. Consider the map f : [0, 2π) →
S1 by f(t) = (cos(t), sin(t)). You may assume that f is con-
tinuous, one-to-one, and onto. Show that f−1 is not continuous
and hence not a homeomorphism.

Solution:

(a) By assumption, f is continuous, one-to-one, and onto its image
f(I). Moreover, we have shown in class that f−1 is continuous,
hence f is a homeomorphism.

(b) Since f is continuous, one-to-one, and onto its image, it suffices
to show that f−1 is continuous.
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Claim: f is continuous if and only if for each closed set
C, f−1(C) is closed

This follows because if f is continuous and C is closed, then
Cc is open, and therefore f−1(Cc) is open, hence

(
f−1(C)

)c
is

open, so f−1(C) is closed ✓

Conversely, if f−1(C) is closed whenever C is closed, then if U
is any open set, then U c is closed, so by assumption f−1(U c)
is closed, and therefore

(
f−1(U)

)c
is closed, and so f−1(U) is

open, so f is continuous ✓

Now suppose C is an arbitrary closed subset of K, then since
K is compact, C is a closed subset of a compact set, and hence
compact. Therefore, since C is compact and f is continuous,
f(C) is compact, and hence closed.

Therefore, whenever C is closed, f(C) is closed, and by the

claim below, it follows that
(
f−1
)−1

(C) = f(C) is closed, and
so f−1 is continuous since f was arbitrary

Claim:
(
f−1
)−1

(C) = f(C)

Proof:

x ∈
(
f−1
)−1

(C) ⇔f−1(x) ∈ C

⇔f
(
f−1(x)

)
∈ f(C)

⇔x ∈ f(C)✓ □



24 MORE TOPOLOGY

(c) Let

(xn) =

(
cos

(
2π − 1

n

)
, sin

(
2π − 1

n

))
Then (xn) converges to (1, 0), but f−1(xn) = 2π − 1

n converges
to 2π ̸= f−1((1, 0)) = 0.

Hence f−1 is not continuous.

Problem 17:

(a) Show that homeomorphisms map compact sets onto compact
sets. Hence compactness is a topological property. Deduce that
[0, 1] and R are not homeomorphic

(b) Show that homeomorphisms map connected sets onto connected
sets. So connectedness is a topological property. Deduce that
[0, 2π] and the unit circle S1 in R2 are not homeomorphic

(c) Show openness and closedness are topological properties. De-
duce that (0, 1) and [0, 1] (considered as subsets of R) are not
homeomorphic

Solution:

(a) This just follows because if K is compact and f is continuous,
then f(K) is compact. Therefore, since [0, 1] is compact but R
is not compact, the two spaces are not homeomorphic.

(b) This just follows because if E is connected and f is continuous,
then f(E) is connected.
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It is not hard to show that if f : E → F is a homeomorphism
and x0 ∈ E, then f : E\ {x0} → F\ {f(x0)} is also a homeo-
morphism.

Now if [0, 2π] and S1 were homeomorphic with homeomorphism
f , then [0, 2π]\ {1} and S1\ {f(1)} would also be a homeomor-
phism. But this can’t be because [0, 2π]\ {1} = [0, 1)∪ (1, 2π] is
disconnected, whereas S1 minus a point is still connected! ⇒⇐

(c) Suppose A is open and f is a homemomorphism, then f(A) =(
f−1
)−1

(A) is open since f−1 is continuous and A is open. Sim-

ilarly, if B is closed, then f(B) =
(
f−1
)−1

(B) is closed since
f−1 is continuous and B is closed

Now Since (0, 1) is open in R and [0, 1] is not open in R, those
two cannot be homeomorphic.
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