MORE TOPOLOGY

In this set of notes, we will explore another fascinating facet of topology, namely continuity and connectedness.

1. Continuity in Metric Spaces

Video: Metric Space Continuity

The definition of continuity can be generalized to metric spaces

Definition:

If (S, d) and $\left(S^{\prime}, d^{\prime}\right)$ are metric spaces with $f: S \rightarrow S^{\prime}$
Then f is continuous at $x_{0} \in S$ if for all $\epsilon>0$ there is $\delta>0$ such that for all x,

$$
d\left(x, x_{0}\right)<\delta \Rightarrow d^{\prime}\left(f(x), f\left(x_{0}\right)\right)<\epsilon
$$

f is continuous if f is continuous at x_{0} for all $x_{0} \in S$
Problem 1: Let (S, d) be any metric space, and consider $\left(\mathbb{R}^{k}, d^{\prime}\right)$ where d^{\prime} is the usual metric:

$$
d^{\prime}\left(\left(x_{1}, \ldots, x_{k}\right),\left(y_{1}, \ldots, y_{k}\right)\right)=\sqrt{\sum_{j=1}^{k}\left(y_{j}-x_{j}\right)^{2}}
$$

Show that $f=\left(f_{1}, \ldots, f_{k}\right): S \rightarrow \mathbb{R}^{k}$ is continuous if and only if each component $f_{j}: S \rightarrow \mathbb{R}$ is continuous (where \mathbb{R} is equipped with the
usual metric).
Solution: (\Rightarrow) Let $\epsilon>0$ be given, then there is $\delta>0$ such that if $d\left(x, x_{0}\right)<\delta$, then $d^{\prime}\left(f(x), f\left(x_{0}\right)\right)<\epsilon$.

But, with that same δ, if $d\left(x, x_{0}\right)<\delta$, then for each j,

$$
\left|f_{j}(x)-f_{j}\left(x_{0}\right)\right|=\sqrt{\left(f_{j}(x)-f_{j}\left(x_{0}\right)\right)^{2}} \leq \sqrt{\sum_{j=1}^{k}\left(f_{j}(x)-f_{j}\left(x_{0}\right)\right)^{2}}<\epsilon \checkmark
$$

Hence f_{j} is continuous.
(\Leftarrow) Let $\epsilon>0$ be given, then for each j, there is $\delta_{j}>0$ such that if $d\left(x, x_{0}\right)<\delta_{j}$, then $\left|f_{j}(x)-f_{j}\left(x_{0}\right)\right|<\frac{\epsilon}{\sqrt{k}}$

Let $\delta=\min \left\{\delta_{1}, \ldots, \delta_{k}\right\}>0$, then if $d\left(x, x_{0}\right)<\delta$, then

$$
\begin{aligned}
d\left(f(x), f\left(x_{0}\right)\right) & =\sqrt{\sum_{j=1}^{k}\left(f_{j}(x)-f_{j}\left(x_{0}\right)\right)}<\sqrt{\sum_{j=1}^{k}\left(\frac{\epsilon}{\sqrt{k}}\right)^{2}}=\sqrt{\sum_{j=1}^{k} \frac{\epsilon^{2}}{k}} \\
& =\sqrt{k\left(\frac{\epsilon^{2}}{k}\right)}=\sqrt{\epsilon^{2}}=\epsilon
\end{aligned}
$$

Hence f is continuous
Problem 2: Let (S, d) be \mathbb{R} equipped with the discrete metric

$$
d(x, y)=\left\{\begin{array}{l}
1 \text { if } x=y \\
0 \text { if } x \neq y
\end{array}\right.
$$

And let $\left(S^{\prime}, d^{\prime}\right)$ be any metric space. Show that any function $f: S \rightarrow S^{\prime}$ must be continuous

Video: Every function is continuous
Solution: Let $\epsilon>0$ be given, let $\delta=\frac{1}{2}$, then if $d\left(x, x_{0}\right)<\delta=\frac{1}{2}<1$, then $x=x_{0}$, and therefore

$$
d^{\prime}\left(f(x), f\left(x_{0}\right)\right)=d^{\prime}\left(f\left(x_{0}\right), f\left(x_{0}\right)\right)=0<\epsilon \checkmark
$$

Hence any f is continuous
Problem 3: This problem is taken from the Berkeley Pre-lim, which is an exam given to first year graduate students at Berkeley, and is therefore quite challenging \odot

Suppose that $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ (with their usual metrics) satisfies the following two conditions:
(1) For each compact set $K, f(K)$ is compact
(2) For any nested decreasing sequence of compact sets $K_{1} \supseteq K_{2} \supseteq$ $K_{3} \supseteq \ldots$, we have

$$
f\left(\bigcap K_{n}\right)=\bigcap f\left(K_{n}\right)
$$

Show that f is continuous

Video: Berkeley Prelim Problem

Solution: STEP 1: Fix $x_{0} \in \mathbb{R}^{k}$ and let $\epsilon>0$ be given. Let $K_{n}=$ $\overline{B\left(x_{0}, \frac{1}{n}\right)}$, notice that the K_{n} are decreasing, and therefore, by (2), we have

$$
\bigcap_{n=1}^{\infty} f\left(K_{n}\right)=f\left(\bigcap_{n=1}^{\infty} K_{n}\right)=f\left(\left\{x_{0}\right\}\right)=\left\{f\left(x_{0}\right)\right\}
$$

STEP 2: Let $B=B\left(f\left(x_{0}\right), \epsilon\right)=\left(f\left(x_{0}\right)-\epsilon, f\left(x_{0}\right)+\epsilon\right)$.
Then, first of all

$$
\bigcap\left(f\left(K_{n}\right) \backslash B\right)=\left(\bigcap f\left(K_{n}\right)\right) \cap B^{c}=\left\{f\left(x_{0}\right)\right\} \backslash B=\emptyset
$$

(because $f\left(x_{0}\right)$ is in B)
On the other hand, since K_{n} is compact, by (1), $f\left(K_{n}\right)$ is compact and hence closed, and so $f\left(K_{n}\right) \backslash B=f\left(K_{n}\right) \cap B^{c}$ is closed. And since the K_{n} are decreasing, the $f\left(K_{n}\right)$ are decreasing, and so is $f\left(K_{n}\right) \backslash B$.

Now if for all $n,\left(f\left(K_{n}\right) \backslash B\right) \neq \emptyset$, then by the finite intersection property we would have $\bigcap\left(f\left(K_{n}\right) \backslash B\right) \neq \emptyset$, which contradicts the above.

Therefore, for some $N, f\left(K_{N}\right) \backslash B=f\left(K_{n}\right) \cap B^{c}=\emptyset$.
STEP 3: But this implies that $f\left(K_{N}\right) \subseteq B$, and therefore, if $\left|x-x_{0}\right|<$ $\frac{1}{N} \leq \frac{1}{N}$, then $x \in \overline{B\left(x_{0}, \frac{1}{N}\right)}=K_{N}$, and so $f(x) \in f\left(K_{N}\right) \subseteq B=$ $B\left(f\left(x_{0}\right), \epsilon\right)$, meaning $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$. In other words

$$
\left|x-x_{0}\right|<\frac{1}{N} \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon
$$

STEP 4: Now given $\epsilon>0$, let $\delta<\frac{1}{N}$ as above, then if $\left|x-x_{0}\right|<\delta<$ $\frac{1}{N}$, then $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$, and therefore f is continuous at x_{0}, and hence is continuous.

2. Continuity in Topology

Video: Topological Continuity

There is a way of talking about continuity without mentioning $\epsilon-\delta$ or sequences at all. This is the one commonly used in topology:

Definition:

If $f: \mathbb{R} \rightarrow \mathbb{R}$, and U is any subset of \mathbb{R}, then the pre-image $f^{-1}(U)$ is defined by

$$
x \in f^{-1}(U) \Leftrightarrow f(x) \in U
$$

Note: The above definition works for any function f, not just invertible ones!

Example: $f(x)=2 x+3$, then $f^{-1}((5,9))=(1,3)$ because

$$
\begin{aligned}
x \in f^{-1}((5,9)) & \Leftrightarrow f(x) \in(5,9) \\
& \Leftrightarrow 5<2 x+3<9 \\
& \Leftrightarrow 2<2 x<6 \\
& \Leftrightarrow 1<x<3
\end{aligned}
$$

Problem 4: Calculate $f^{-1}(U)$ for the following functions f and the following sets U
(a) $f(x)=3 x+7, U=(7,10)$
(b) $f(x)=x^{2}, U=(-1,4)$
(c) $f(x)=\sin (x), U=(0,1)$

Note: Observe that in all of the examples, both U and $f^{-1}(U)$ are open! This is precisely because f is continuous (in topology, this is taken as the definition of continuity, since it only involves open sets)

Solution:

(a)

$$
\begin{aligned}
x \in f^{-1}((7,10)) & \Leftrightarrow f(x) \in(7,10) \\
& \Leftrightarrow 7<3 x+7<10 \\
& \Leftrightarrow 0<3 x<3 \\
& \Leftrightarrow 0<x<1
\end{aligned}
$$

Hence $f^{-1}(U)=(0,1)$
(b)

$$
\begin{aligned}
x \in f^{-1}((-1,4)) & \Leftrightarrow f(x) \in(-1,4) \\
& \Leftrightarrow-1<x^{2}<4 \\
& \Leftrightarrow-2<x<2
\end{aligned}
$$

Hence $f^{-1}(U)=(-2,2)$
(c)

$$
\begin{aligned}
x \in f^{-1}((0,1)) & \Leftrightarrow f(x) \in(0,1) \\
& \Leftrightarrow 0<\sin (x)<1 \\
& \Leftrightarrow x \in\left(2 \pi m, 2 \pi m+\frac{\pi}{2}\right) \cup\left(2 \pi m+\frac{\pi}{2},(2 m+1) \pi\right), m \in \mathbb{Z}
\end{aligned}
$$

Hence

$$
f^{-1}((0,1))=\bigcup_{m \in \mathbb{Z}}\left(2 \pi m, 2 \pi m+\frac{\pi}{2}\right) \cup\left(2 \pi m+\frac{\pi}{2},(2 m+1) \pi\right)
$$

Fact:

$f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if and only if

$$
U \text { is open } \Rightarrow f^{-1}(U) \text { is open }
$$

Problem 5: Prove this fact
Solution: (\Rightarrow) Suppose f is continuous and let U be open. We want to show $f^{-1}(U)$ is open.

Let $x_{0} \in f^{-1}(U)$. Then, by definition $f\left(x_{0}\right) \in U$. Since U is open, there is $\epsilon>0$ such that $\left(f\left(x_{0}\right)-\epsilon, f\left(x_{0}\right)+\epsilon\right) \subseteq U$

However, since f is continuous, there is $\delta>0$ such that if $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$.

Claim: $\left(x_{0}-\delta, x_{0}+\delta\right) \subseteq f^{-1}(U)$
(Then we're done because this shows $f^{-1}(U)$ is open)
Suppose $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$, then $f(x) \in\left(f\left(x_{0}\right)-\epsilon, f\left(x_{0}\right)+\epsilon\right) \subseteq U$, and so $f(x) \in U$ and so $x \in f^{-1}(U) \checkmark$
(\Leftarrow) Suppose $f^{-1}(U)$ is open whenever U is open, and let's show f is continuous.

Fix x_{0} Let $\epsilon>0$ be given, then notice that $U=\left(f\left(x_{0}\right)-\epsilon, f\left(x_{0}\right)+\epsilon\right)$ is open, and therefore, by assumption, $f^{-1}(U)$ is open.

Moreover, since $f\left(x_{0}\right) \in U, x_{0} \in f^{-1}(U)$ (which is open), and therefore, by definition, there is $\delta>0$ such that $\left(x_{0}-\delta, x_{0}+\delta\right) \subseteq f^{-1}(U)$

But then, with that δ if $\left|x-x_{0}\right|<\delta$, then $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$ and so $x \in f^{-1}(U)$, which means $f(x) \in U=\left(f\left(x_{0}\right)-\epsilon, f\left(x_{0}\right)+\epsilon\right)$, so $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$, and so f is continuous at x_{0}, and hence continuous \checkmark

Problem 6: To illustrate the elegance of the above definition, let's give a quick proof of the fact that composition of continuous functions are continuous
(a) If f and g are any functions (not necessarily invertible), prove that

$$
(g \circ f)^{-1}(U)=f^{-1}\left(g^{-1}(U)\right)
$$

(b) Use (a) and the definition above to show that if f and g are continuous, then $g \circ f$ is continuous

Solution:

(a)

$$
\begin{aligned}
x \in(g \circ f)^{-1}(U) & \Leftrightarrow(g \circ f)(x) \in U \\
& \Leftrightarrow g(f(x)) \in U \\
& \Leftrightarrow f(x) \in g^{-1}(U) \\
& \Leftrightarrow x \in f^{-1}\left(g^{-1}(U)\right)
\end{aligned}
$$

(b) Suppose U is open, then since g is continuous, $g^{-1}(U)$ is open, and hence, since f is continuous, $f^{-1}\left(g^{-1}(U)\right)$ is open, and therefore

$$
(g \circ f)^{-1}(U)=f^{-1}\left(g^{-1}(U)\right) \text { is open } \checkmark
$$

Hence $g \circ f$ is continuous
Problem 7: Prove that, for any function f and any sets A and B, we have
(a) $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$
(b) $f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$
(c) $f^{-1}\left(A^{c}\right)=\left(f^{-1}(A)\right)^{c}$

Solution:

(a)

$$
\begin{aligned}
x \in f^{-1}(A \cup B) & \Leftrightarrow f(x) \in A \cup B \\
& \Leftrightarrow(f(x) \in A) \text { or }(f(x) \in B) \\
& \Leftrightarrow\left(x \in f^{-1}(A)\right) \text { or }\left(x \in f^{-1}(B)\right) \\
& \Leftrightarrow x \in f^{-1}(A) \cup f^{-1}(B)
\end{aligned}
$$

(b)

$$
\begin{aligned}
x \in f^{-1}(A \cap B) & \Leftrightarrow f(x) \in A \cap B \\
& \Leftrightarrow(f(x) \in A) \text { and }(f(x) \in B) \\
& \Leftrightarrow\left(x \in f^{-1}(A)\right) \text { and }\left(x \in f^{-1}(B)\right) \\
& \Leftrightarrow x \in f^{-1}(A) \cap f^{-1}(B)
\end{aligned}
$$

(c)

$$
\begin{aligned}
x \in f^{-1}\left(A^{c}\right) & \Leftrightarrow f(x) \in A^{c} \\
& \Leftrightarrow f(x) \notin A \\
& \Leftrightarrow \operatorname{Not}(f(x) \in A) \\
& \Leftrightarrow \operatorname{Not}\left(x \in f^{-1}(A)\right) \\
& \Leftrightarrow x \notin f^{-1}(A) \\
& \Leftrightarrow x \in\left(f^{-1}(A)\right)^{c}
\end{aligned}
$$

Definition:

Given a function f and a subset A of \mathbb{R}, we define

$$
f(A)=\{f(x) \mid x \in A\}
$$

Problem 8: Here's a nice exercise using compactness and pre-images
(a) Show that if K is (covering) compact and f is continuous, then $f(K)$ is (compact)
(b) Is there a continuous function f with domain $[0,1]$ and range $(0,1)$?
(c) Show that any continuous function from $[a, b]$ to \mathbb{R} must be bounded

Video: Continuity and Compactness

Solutions:

(a) STEP 1: Let $\mathcal{U}=\left\{U_{\alpha}\right\}$ be an open cover of $f(K)$, and consider $\mathcal{U}^{\prime}=\left\{f^{-1}\left(U_{\alpha}\right)\right\}$.

STEP 2: Then, since U_{α} is open and f is continuous, $f^{-1}\left(U_{\alpha}\right)$ is open.

Moreover, by an analog of the above problem, we have

$$
\bigcup_{\alpha} f^{-1}\left(U_{\alpha}\right)=f^{-1}\left(\bigcup_{\alpha} U_{\alpha}\right)
$$

And, since \mathcal{U} covers $f(K)$, we have $K \subseteq \bigcup_{\alpha} U_{\alpha}$ and so $f^{-1}\left(\bigcup_{\alpha} U_{\alpha}\right) \supseteq$ $f^{-1}(f(K))$
And finally $K \subseteq f^{-1}(f(K))$ since if $x \in K$, then $f(x) \in f(K)$ and so $x \in f^{-1}(f(K))$.

Therefore, combining everything, we get

$$
\bigcup_{\alpha} f^{-1}\left(U_{\alpha}\right) \supset K
$$

STEP 3: So \mathcal{U}^{\prime} covers K. But since K is compact, there is a finite sub-cover

$$
\mathcal{V}^{\prime}=\left\{f^{-1}\left(U_{n_{1}}\right), \ldots, f^{-1}\left(U_{n_{N}}\right)\right\}
$$

STEP 4:

Claim:

$$
\mathcal{V}=:\left\{U_{n_{1}}, \ldots, U_{n_{N}}\right\}
$$

Covers K
(Then we're done because we found a finite sub-cover of \mathcal{U})

But if $y \in f(K)$, then $y=f(x)$ for some $x \in K$, but since \mathcal{V} covers $K, x \in f^{-1}\left(U_{n_{k}}\right)$ for some k, and so $y=f(x) \in U_{n_{k}} \in \mathcal{V}$ \checkmark
(b) No since $[0,1]$ is compact, and so $f([0,1])$ would be compact, but $f([0,1])=(0,1)$, which is not compact
(c) Since $[a, b]$ is compact and f is continuous, $f([a, b])$ is compact, and therefore bounded, which means that f is bounded (that is there is $M>0$ such that $|f(x)| \leq M$ for all $x \in[a, b]$)

Problem 9: Give a quick proof of the Extreme Value Theorem: If K is a compact subset of \mathbb{R} and $f: K \rightarrow \mathbb{R}$ is continuous, then f attains a maximum and a minimum

Solution: Since K is compact, and f is continuous, $f(K)$ is compact by the problem above. Since $f(K)$ is compact, it is closed and bounded, and therefore it has a least upper bound $M=\sup (f(K))$

Let $\left(y_{n}\right)$ be a sequence in $f(K)$ converging to M. By definition of $f(K), y_{n}=f\left(x_{n}\right)$ for some $x_{n} \in K$ But since K is (covering) compact, K is sequentially compact, and therefor $\left(x_{n}\right)$ has a convergent subsequence $\left(x_{n_{k}}\right)$ that converges to some $x_{0} \in K$

But since f is continuous, we get $f\left(x_{n_{k}}\right) \rightarrow f\left(x_{0}\right)$.
But then since y_{n} converges to M, the subsequence $y_{n_{k}}=f\left(x_{n_{k}}\right)$ converges to M, so by uniqueness of limits, $f\left(x_{0}\right)=M$, so f has a maximum M at $x_{0} \in K$, and similarly f has a minimum m at some other point.

3. Connectedness

Video: Connectedness

Definition:

Let E be any subset of \mathbb{R} (or of any metric space)
(1) E is disconnected if there are disjoint, nonempty, and open subsets A and B of E such that $A \cup B=E$
(2) E is connected if it is not disconnected

For example, \mathbb{R} is connected but $(0,1) \cup(2,3)$ is disconnected

Problem 10: Give a short proof of the Intermediate Value Theorem: If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and c is between $f(a)$ and $f(b)$, then there is $x \in[a, b]$ with $f(x)=c$. Isn't connectedness awesome?

Solution: Suppose not, then there is c such that $f(x) \neq c$ for all $x \in[a, b]$. This means that for all x, either $f(x)>c$ or $f(x)<c$, and therefore $[a, b]=A \cup B$ where

$$
\begin{aligned}
& A=\{x \in[a, b] \mid f(x)<c\}=f^{-1}((-\infty, c)) \\
& B=\{x \in[a, b] \mid f(x)>c\}=f^{-1}((c, \infty))
\end{aligned}
$$

Now $A \cup B=\emptyset$ and A and B are nonempty since either $f(a)$ or $f(b)$ are in A or B

Moreover, A and B are open since f is continuous and $(-\infty, c)$ and (c, ∞) are open.

And therefore $[a, b]=A \cup B$ with A and B nonempty, open, and disjoint, which contradicts the fact that $[a, b]$ is connected. $\Rightarrow \Leftarrow$

Problem 11: Suppose E is connected and $f: E \rightarrow \mathbb{R}$ is continuous, prove that $f(E)$ is connected.

Suppose E is connected by $f(E)$ is not connected. Then there are A and B nonempty, open, and disjoint with $f(E)=A \cup B$.

But now consider $A^{\prime}=f^{-1}(A)$ and $B^{\prime}=f^{-1}(B)$. Then, since A and B are open and f is continuous, we get A^{\prime} and B^{\prime} are open. Moreover:

$$
\begin{gathered}
A^{\prime} \cap B^{\prime}=f^{-1}(A) \cap f^{-1}(B)=f^{-1}(A \cap B)=f^{-1}(A \cap B)=f^{-1}(\emptyset)=\emptyset \\
A^{\prime} \cup B^{\prime}=f^{-1}(A) \cup f^{-1}(B)=f^{-1}(A \cup B)=f^{-1}(f(E))=E
\end{gathered}
$$

(The latter follows because for all $x \in E, f(x) \in f(E)$ and therefore $\left.x \in f^{-1}(f(E))\right)$

Finally, since A is nonempty there is $a \in A \subseteq f(E)$ and therefore there is $a^{\prime} \in E$ with $f\left(a^{\prime}\right) \in A$ and so $a^{\prime} \in f^{-1}(A)=A^{\prime}$ and so A^{\prime} is nonempty, and similarly B^{\prime} is nonempty.

Therefore A^{\prime} and B^{\prime} are disjoint, nonempty, and open subsets of E with $A^{\prime} \cup B^{\prime}=E$, but this implies that E is disconnected $\Rightarrow \Leftarrow$

Problem 12: Prove that \mathbb{R} is connected. More generally, it follows that any interval I is connected.

Video: \mathbb{R} is connected

Solution: Suppose \mathbb{R} is not connected. Then we can write $\mathbb{R}=A \cup B$ with A, B nonempty, open and disjoint.

STEP 1: Since A and B are nonempty, fix $a \in A$ and $b \in B$. WLOG $a<b(a \neq b$ since A and B are disjoint $)$ and consider

$$
S=\{x \in[a, b] \mid[a, x] \subseteq A\}
$$

Then S is nonempty since $a \in S$ and moreover S is bounded above by b, hence S has a least upper bound $M=\sup (S)$

STEP 2:

Claim: $M \notin B$
Suppose $M \in B$. Then since B is open, there is $r>0$ such that $(M-r, M+r) \subseteq B$.

Since $M-r<M=\sup (S)$, there is $x \in S$ such that $x>M-r$. Since $x \in S$, we get $[a, x] \subseteq A$, and so $x \in A$. But, on the other hand $x \in$ $(M-r, M] \subseteq(M-r, M+r) \subseteq B$, and therefore $x \in A \cap B=\emptyset \Rightarrow \Leftarrow$. Hence, since $M \notin B$ and $A \cup B=\mathbb{R}$, we must have $M \in A$

STEP 3: Moreover $M \in S$, because if $M \notin S$, then $[a, M] \nsubseteq A$, meaning there is $x \in[a, M]$ with $x \notin A$. But since $M \in A$, we have $x<M=\sup (S)$ and therefore there is $y \in S$ with $y>x$. But by definition of S, we have $[a, y] \subseteq A$ and so, since $x<y$ we get $[a, x] \subseteq[a, y] \subseteq A$, which is a contradiction since $x \notin A$.

STEP 4: Now $M<b$, because if $b \leq M$, then we get a contradiction because, since $M \in S$, we have $[a, M] \subseteq A$ and so $b \in[a, M] \subseteq A$ so
$b \in A \Rightarrow \Leftarrow$

STEP 5:

Claim: $M \notin A$

Suppose $M \in A$, then, since A is open, there is $r^{\prime}>0$ such that $\left(M-r^{\prime}, M+r^{\prime}\right) \subseteq A$. Let $M^{\prime}=\min \left\{M+r^{\prime}, b\right\}$

Then $M^{\prime}>M$, and so $M^{\prime} \notin S$ because $M=\sup (S)$.
Therefore, by definition of $S,\left[a, M^{\prime}\right] \nsubseteq A$, so there is some $x \in\left[a, M^{\prime}\right]$ with $x \notin A$. But since $[a, M] \subseteq A$ (because $M \in S$), we must have $x \in\left(M, M^{\prime}\right]$. Moreover, $x \neq M+r^{\prime}$ (because $M+r^{\prime} \in A$ but $x \notin A$), and therefore $x \in\left(M, M+r^{\prime}\right) \subseteq A$, so $x \in A \Rightarrow \Leftarrow$.

Hence $M \notin A$ either, and therefore M is neither in A or in B, which contradicts $\mathbb{R}=A \cup B \Rightarrow \Leftarrow$.

Definition:

Let E be any subset of \mathbb{R} (or of any metric space)
(1) A path in E is a continuous function $\gamma:[0,1] \rightarrow E$
(2) E is path-connected if for any pair of points a and b in E, there is a path γ with $\gamma(0)=a$ and $\gamma(1)=b$

Problem 13:

(a) Show that if E is path-connected, then it is connected
(b) Show \mathbb{R} is path-connected and deduce that it is connected.

Solution: For (a), suppose E is path-connected but not connected. Since E is not connected, there are A and B, nonempty, open, and disjoint such that $A \cup B=E$.

Since A and B are nonempty, there is $a \in A$ and $b \in B$.
Since γ is path-connected, there is a path $\gamma:[0,1] \rightarrow E$ with $\gamma(0)=a$ and $\gamma(1)=b$

Now consider $A^{\prime}=\gamma^{-1}(A)$ and $B^{\prime}=\gamma^{-1}(B)$. Then since A and B are open and γ is continuous, we get A^{\prime} and B^{\prime} are open.

Moreover $0 \in A^{\prime}$ since $\gamma(0)=a \in A$ and therefore A^{\prime} is nonempty, and similarly B^{\prime} is nonempty, and finally

$$
\begin{aligned}
& A^{\prime} \cap B^{\prime}=\gamma^{-1}\left(A^{\prime} \cap B^{\prime}\right)=\gamma^{-1}\left(A^{\prime}\right) \cap \gamma^{-1}\left(B^{\prime}\right)=A \cap B=\emptyset \\
& A^{\prime} \cup B^{\prime}=\gamma^{-1}\left(A^{\prime} \cup B^{\prime}\right)=\gamma^{-1}\left(A^{\prime}\right) \cup \gamma^{-1}\left(B^{\prime}\right)=A \cup B=[0,1]
\end{aligned}
$$

But therefore A^{\prime} and B^{\prime} are disjoint, open, nonempty subsets of $[0,1]$ whose union in $[0,1]$, which contradicts that $[0,1]$ is connected $\Rightarrow \Leftarrow$.

Hence E must be connected
For (b), let $a, b \in \mathbb{R}$ and consider the path $\gamma(t)=(1-t) a+t b$, which is continuous and has values in \mathbb{R} and $\gamma(0)=a$ and $\gamma(1)=b \checkmark$

Problem 14: The topologist's sine curve is defined as

$$
E=F \cup G=:\left\{\left.\left(x, \sin \left(\frac{1}{x}\right)\right) \right\rvert\, x \in(0,1]\right\} \cup\{\{0\} \times[-1,1]\}
$$

Show that E is connected but not path-connected.

Video: Topologist Sine Curve
Solution: Note: The solutions here are taken from this handout Proof that E is connected:

Claim: If F is connected subset of \mathbb{R}^{2}, then \bar{F} is connected
Proof: The result is true of $F=\emptyset$, so assume $F \neq \emptyset$.

Suppose F is connected but \bar{F} is not connected. Then there are open nonempty disjoint subsets A and B of \bar{F} such that $A \cup B=\bar{F}$.

Consider $A^{\prime}=A \cap F$ and $B^{\prime}=B \cap F$. Then A^{\prime} and B^{\prime} are open in F, disjoint, and their union is F. But since F is connected, we must have $A^{\prime}=F$ and $B^{\prime}=\emptyset$ or $A^{\prime}=\emptyset$ and $B^{\prime}=F$.

WLOG, assume $A^{\prime}=F$ and $B^{\prime}=\emptyset$
Notice that, since $A^{c}=B$ is open (the complement here is in \bar{F}) we get A is closed in \bar{F}, hence there is some closed subset C of \mathbb{R}^{2} with $A=C \cap \bar{F}$

But then $F=A^{\prime} \subseteq A \subseteq C$, and since \bar{F} is the smallest closed subset containing F, we get $\bar{F} \subseteq C$, and hence

$$
A=C \cap \bar{F}=\bar{F}
$$

And since A is disjoint from B, we must get that $B=\emptyset \Rightarrow \Leftarrow$.
To show that our topologist sine curve is connected, let

$$
F=\left\{\left.\left(x, \sin \left(\frac{1}{x}\right)\right) \right\rvert\, x \in(0,1]\right\}
$$

Then F is connected since it is path-connected (for a and b in (0,1], just consider the path $\gamma(t)=\left((1-t) a+t b, \sin \left(\frac{1}{(1-t) a+t b}\right)\right)$), and moreover $\bar{F}=E$ (since $\sin \left(\frac{1}{x}\right)$ has the intermediate value property on \mathbb{R}), and therefore by the Claim, E is connected

Proof that E is not path-connected: Suppose not, then in particular is there is $\gamma:[0,1] \rightarrow E$ with $\gamma(0) \in F$ and $\gamma(1) \in G$.

Because G is just a straight line (which is path-connected), we may assume $\gamma(1)=(0,1)$.

Let $\epsilon=\frac{1}{2}$, then by continuity of γ at 1 , there is $\delta>0$ such that

$$
\begin{aligned}
& \text { If }|t-1| \leq \delta \Rightarrow 1-\delta \leq t \leq 1 \text {, then } \\
& |\gamma(t)-\gamma(1)|<\frac{1}{2} \Rightarrow|\gamma(t)-(0,1)|<\frac{1}{2}
\end{aligned}
$$

(Note: Here the absolute value for γ is just the usual distance in \mathbb{R}^{2}. Also the $\leq \delta$ isn't really a problem)

Let $\gamma(1-\delta)=:\left(x_{0}, y_{0}\right)$ and remember that $\gamma(1)=(0,1)$
Since $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$ is continuous, the first component γ_{1} is continuous, and therefore, by the Intermediate Value Theorem, γ_{1} attains all the values between $\gamma_{1}(1-\delta)=x_{0}$ and $\gamma_{1}(1)=0$, and hence $\gamma_{1}([1-\delta, 1])$ contains the interval $\left[0, x_{0}\right.$]

Hence for all $x_{1} \in\left(0, x_{0}\right]$ there is some t with $\gamma_{1}(t)=x_{1}$ and therefore, by definition, there is $t \in[1-\gamma, 1]$ such that

$$
\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right)=\left(x_{1}, \sin \left(\frac{1}{x_{1}}\right)\right)
$$

But now let $x_{1}=\frac{1}{2 \pi n-\frac{\pi}{2}}$, then for n large enough we have $0<x_{1}<x_{0}$, but $\sin \left(\frac{1}{x_{1}}\right)=\sin \left(-\frac{\pi}{2}\right)=-1$
Hence the point $\left(\frac{1}{2 \pi n-\frac{\pi}{2}},-1\right)$ has the form $f(t)$ for some $t \in[1-\delta, 1]$ and hence t is a distance of $\frac{1}{2}$ away from $(0,1)$, which contradicts the fact that the distance between $\left(\frac{1}{2 \pi n-\frac{\pi}{2}},-1\right)$ and $(0,1)$ is at least 2

4. Homeomorphisms

Video: Homeomorphism

Definition:

Let A and B be two subsets of \mathbb{R} (or any two metric spaces) and $f: A \rightarrow B$ is a function, then:
(a) f is a homeomorphism if f is continuous, one-to-one, onto, and f^{-1} is continuous
(b) A and B are homeomorphic if there is a homemorphism between A and B
(c) A topological property is a property that is preserved under homeomorphisms

Problem 15:

(a) Show that there is a homeomorphism between $(0,1)$ and \mathbb{R}. So surprisingly $(0,1)$ and \mathbb{R} are homeomorphic
(b) Deduce that boundedness is not a topological property.

Solution: For (a), consider $f:(0,1) \rightarrow \mathbb{R}$ defined by

$$
f(x)=\tan ^{-1}\left(\pi x-\frac{\pi}{2}\right)
$$

Then, one can check that $g(x)=\pi x-\frac{\pi}{2}$ is continuous, one-to-one, and onto, and its inverse is continuous and therefore a homeomorphism.

Also since $\tan :\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$ is continuous and one-to-one and onto \mathbb{R} (you can show this using the fact that $\tan (x) \rightarrow \pm \infty$ near $\pm \frac{\pi}{2}$ and an analog of the Intermediate Value Theorem), its inverse $\tan ^{-1}$ is continuous, and therefore a homeomorphism

Hence $f(x)$ is a homeomorphism, being a composition of two homeomorphisms, and therefore $(0,1)$ and \mathbb{R} are homeomorphic.

For (b), since $(0,1)$ is bounded but \mathbb{R} is unbounded, boundedness is not a topological property.

Problem 16:

(a) Show that if $f: I \rightarrow f(I)$ is continuous and one-to-one, then f is a homeomorphism
(b) Show that if K is covering compact and $f: K \rightarrow f(K)$ is continuous and one-to-one, then f is a homeomorphism
(c) Let S^{1} be the unit circle in \mathbb{R}^{2}. Consider the map $f:[0,2 \pi) \rightarrow$ S^{1} by $f(t)=(\cos (t), \sin (t))$. You may assume that f is continuous, one-to-one, and onto. Show that f^{-1} is not continuous and hence not a homeomorphism.

Solution:

(a) By assumption, f is continuous, one-to-one, and onto its image $f(I)$. Moreover, we have shown in class that f^{-1} is continuous, hence f is a homeomorphism.
(b) Since f is continuous, one-to-one, and onto its image, it suffices to show that f^{-1} is continuous.

Claim: f is continuous if and only if for each closed set $C, f^{-1}(C)$ is closed

This follows because if f is continuous and C is closed, then C^{c} is open, and therefore $f^{-1}\left(C^{c}\right)$ is open, hence $\left(f^{-1}(C)\right)^{c}$ is open, so $f^{-1}(C)$ is closed \checkmark

Conversely, if $f^{-1}(C)$ is closed whenever C is closed, then if U is any open set, then U^{c} is closed, so by assumption $f^{-1}\left(U^{c}\right)$ is closed, and therefore $\left(f^{-1}(U)\right)^{c}$ is closed, and so $f^{-1}(U)$ is open, so f is continuous \checkmark

Now suppose C is an arbitrary closed subset of K, then since K is compact, C is a closed subset of a compact set, and hence compact. Therefore, since C is compact and f is continuous, $f(C)$ is compact, and hence closed.

Therefore, whenever C is closed, $f(C)$ is closed, and by the claim below, it follows that $\left(f^{-1}\right)^{-1}(C)=f(C)$ is closed, and so f^{-1} is continuous since f was arbitrary

Claim: $\left(f^{-1}\right)^{-1}(C)=f(C)$

Proof:

$$
\begin{aligned}
x \in\left(f^{-1}\right)^{-1}(C) & \Leftrightarrow f^{-1}(x) \in C \\
& \Leftrightarrow f\left(f^{-1}(x)\right) \in f(C) \\
& \Leftrightarrow x \in f(C) \checkmark \quad \square
\end{aligned}
$$

(c) Let

$$
\left(x_{n}\right)=\left(\cos \left(2 \pi-\frac{1}{n}\right), \sin \left(2 \pi-\frac{1}{n}\right)\right)
$$

Then $\left(x_{n}\right)$ converges to $(1,0)$, but $f^{-1}\left(x_{n}\right)=2 \pi-\frac{1}{n}$ converges to $2 \pi \neq f^{-1}((1,0))=0$.

Hence f^{-1} is not continuous.

Problem 17:

(a) Show that homeomorphisms map compact sets onto compact sets. Hence compactness is a topological property. Deduce that $[0,1]$ and \mathbb{R} are not homeomorphic
(b) Show that homeomorphisms map connected sets onto connected sets. So connectedness is a topological property. Deduce that [$0,2 \pi]$ and the unit circle S^{1} in \mathbb{R}^{2} are not homeomorphic
(c) Show openness and closedness are topological properties. Deduce that $(0,1)$ and $[0,1]$ (considered as subsets of \mathbb{R}) are not homeomorphic

Solution:

(a) This just follows because if K is compact and f is continuous, then $f(K)$ is compact. Therefore, since $[0,1]$ is compact but \mathbb{R} is not compact, the two spaces are not homeomorphic.
(b) This just follows because if E is connected and f is continuous, then $f(E)$ is connected.

It is not hard to show that if $f: E \rightarrow F$ is a homeomorphism and $x_{0} \in E$, then $f: E \backslash\left\{x_{0}\right\} \rightarrow F \backslash\left\{f\left(x_{0}\right)\right\}$ is also a homeomorphism.

Now if $[0,2 \pi]$ and S^{1} were homeomorphic with homeomorphism f, then $[0,2 \pi] \backslash\{1\}$ and $S^{1} \backslash\{f(1)\}$ would also be a homeomorphism. But this can't be because $[0,2 \pi] \backslash\{1\}=[0,1) \cup(1,2 \pi]$ is disconnected, whereas S^{1} minus a point is still connected! $\Rightarrow \Leftarrow$
(c) Suppose A is open and f is a homemomorphism, then $f(A)=$ $\left(f^{-1}\right)^{-1}(A)$ is open since f^{-1} is continuous and A is open. Similarly, if B is closed, then $f(B)=\left(f^{-1}\right)^{-1}(B)$ is closed since f^{-1} is continuous and B is closed

Now Since $(0,1)$ is open in \mathbb{R} and $[0,1]$ is not open in \mathbb{R}, those two cannot be homeomorphic.

