MORE TOPOLOGY

In this set of notes, we will explore another fascinating facet of topol-
ogy, namely continuity and connectedness.

1. CONTINUITY IN METRIC SPACES

Video: Metric Space Continuity

The definition of continuity can be generalized to metric spaces

If (S,d) and (5, d") are metric spaces with f: .S — 5

Then f is continuous at xy € S if for all € > 0 there is 6 > 0
such that for all x,

d(z,z0) < 6 = d(f(z), f(x)) < €

f is continuous if f is continuous at x( for all ¢y € S

Problem 1: Let (S,d) be any metric space, and consider (R¥, d')
where d’ is the usual metric:

k
d((z1,..., %), (Y1, yk)) = Z(yj —x;)?

Show that f = (fi,..., fr) : S — R¥ is continuous if and only if each
component f; : S — R is continuous (where R is equipped with the
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https://youtu.be/WTbcJYBLxAs
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usual metric).

Solution: (=) Let € > 0 be given, then there is 06 > 0 such that if
d(x, ) < 6, then d'(f(x), f(xg)) < e.

But, with that same ¢, if d(x,z¢) < 9, then for each j,

k
|fy(5’7) _fj(-fO)‘ = \/(fy( ) — fg xg)) 2 < \IZ fj x0) )2 < eV

J=1
Hence f; is continuous.

(<) Let € > 0 be given, then for each j, there is §; > 0 such that if
d(z,x0) < dj, then | f;(z) — fi(zo)] < T

Let 6 = min {dy,...,0,} > 0, then if d(x,z() < ¢, then

d(f(x), f(x0)) :\lifj ~ filao)) \lzk:( )2

Hence f is continuous ]

Problem 2: Let (5,d) be R equipped with the discrete metric

d(z.y) litr=y
T =
Y 0if x #y



MORE TOPOLOGY 3

And let (5', d’) be any metric space. Show that any function f : § — 5’
must be continuous

Video: Every function is continuous

, then if d(z,70) <6 =1 < 1,

Solution: Let € > 0 be given, let 6 = 5

then x = xy, and therefore

No|—

d'(f(z), f(z0)) = d'(f(wo), f(z0)) =0 < ev

Hence any f is continuous O
Problem 3: This problem is taken from the Berkeley Pre-lim, which
is an exam given to first year graduate students at Berkeley, and is

therefore quite challenging ©®

Suppose that f : R¥ — R (with their usual metrics) satisfies the fol-
lowing two conditions:

(1) For each compact set K, f(K) is compact

(2) For any nested decreasing sequence of compact sets Ky 2 Ky 2
K3 D ..., we have

(N Ea) =N £

Show that f is continuous

Video: Berkeley Prelim Problem



https://youtu.be/9tMAEaDcJkc
https://youtu.be/qtghXGOfIxo
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Solution: STEP 1: Fix zp € R* and let € > 0 be given. Let K, =

B(xo, %), notice that the K, are decreasing, and therefore, by (2), we
have

() /() =f (ﬂ Kn) = J ({wo}) = {f (o)}

STEP 2: Let B = B(f(xg),€) = (f(x0) — €, f(z0) + €).

Then, first of all

N FENB) = (N F()) 0B = {f(zo)}\B =0
(because f(z) is in B)

On the other hand, since K, is compact, by (1), f(K,) is compact and

hence closed, and so f(K,)\B = f(K,) N B¢ is closed. And since the
K, are decreasing, the f(K,) are decreasing, and so is f(K,)\B.

Now if for all n, (f(K,)\B) # 0, then by the finite intersection prop-
erty we would have () (f(K,)\B) # (), which contradicts the above.

Therefore, for some N, f(Ky)\B = f(K,) N B = 0.

STEP 3: But this implies that f(Ky) C B, and therefore, if |x — x¢| <

< 4, then z € B(zg,+) = Ky, and so f(z) € f(Ky) C B =

1 1
N )
B(f(x),€), meaning |f(z) — f(z0)| < €. In other words

o — o] < = (&) — Flao)] < e
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STEP 4: Now given € > 0, let § < % as above, then if |z — x| < § <

+, then |f(z) — f(xo)| < €, and therefore f is continuous at z(, and
hence is continuous. O

2. CONTINUITY IN TOPOLOGY

Video: Topological Continuity

There is a way of talking about continuity without mentioning € — ¢
or sequences at all. This is the one commonly used in topology:

If f:R — R, and U is any subset of R, then the pre-image
f~YU) is defined by

refHU)e flz) €U

Note: The above definition works for any function f, not just invert-
ible ones!

Example: f(z) =2z + 3, then f71((5,9)) = (1, 3) because

v e f7((5,9) & f(2) € (5,9)
SH<2r+3<9
S2<2x <6
Sl<r<3

Problem 4: Calculate f~1(U) for the following functions f and the
following sets U

(a) f(z)=32z+7,U = (7,10)


https://youtu.be/tZIKPwhFP3s

(b) f(z) =% U =(-1,4)
(¢) f(z) =sin(x), U = (0,1)

Note: Observe that in all of the examples, both U and f~}(U) are
open! This is precisely because f is continuous (in topology, this is
taken as the definition of continuity, since it only involves open sets)

Solution:

(a)
z € f7H((7,10) & f(z) € (7,10)
ST7T<3r+7<10
S0 <3 <3
Sl<zr<l

Hence f~}(U) = (0,1)

(b)
S f_l((_174)> <:)>f([13) S (_174)
e—-1<2’<4
S —2<r<?2

Hence f~1(U) = (-2,2)
(c)
v € f7H((0,1)) & f(x) € (0,1)

<0 < sin(z) < 1

Sx € (27Tm, 2mm + g) U (27Tm + g, (2m + 1)%) .m € 7
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Hence

f—l((()7 1)) = U (27rm, 2mm + g) U (27rm + g, (2m + 1)7r)

meZ

f : R — R is continuous if and only if

U is open = f~1(U) is open

Problem 5: Prove this fact

Solution: (=) Suppose f is continuous and let U be open. We want
to show f~1(U) is open.

Let 7o € f~1(U). Then, by definition f(xq) € U. Since U is open,
there is € > 0 such that (f(zo) — €, f(zo) +€) CU

However, since f is continuous, there is § > 0 such that if |z — z¢| < 9,
then | f(z) — f(z0)| < e.

Claim: (¢ — 6,79+ 9) C f~1(U)

(Then we're done because this shows f~1(U) is open)

Suppose x € (xg — 0,9 + 9), then f(z) € (f(xo) — €, f(zg) +€) C U,
and so f(z) € U and so x € f~Y(U) v

(<) Suppose f~1(U) is open whenever U is open, and let’s show f is
continuous.
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Fix xy Let € > 0 be given, then notice that U = (f(zo) — €, f(z0) + €)
is open, and therefore, by assumption, f~1(U) is open.

Moreover, since f(zg) € U, xg € f~1(U) (which is open), and there-
fore, by definition, there is 6 > 0 such that (xg — d, 9+ ) C f~1(U)

But then, with that ¢ if |z — x¢| < 9§, then = € (zg — §, 29 + J) and
so z € f~1(U), which means f(z) € U = (f(zo) — €, f(z0) + €), so
|f(x) — f(xp)| <€, and so f is continuous at xy, and hence continuous
v O

Problem 6: To illustrate the elegance of the above definition, let’s
give a quick proof of the fact that composition of continuous functions
are continuous

(a) If f and g are any functions (not necessarily invertible), prove
that

(go /)7 (U)=f g (1))

(b) Use (a) and the definition above to show that if f and g are
continuous, then g o f is continuous

Solution:

(a)
ze(gof) ' (U)e(go f)(z)eU

(b) Suppose U is open, then since g is continuous, ¢~ 1(U) is open,
and hence, since f is continuous, f~ (¢7'(U)) is open, and
therefore
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(go f) " (U) = f (97'(U)) is open v/
Hence g o f is continuous O

Problem 7: Prove that, for any function f and any sets A and B, we
have

(a) fTH(AUB) = fTH(A) U f(B)
(b) fHANB) = fH(A)nf(B)
(c) f7H(A7) = (f7'(A)

Solution:

(a)

ve fHAUB) < f(r) € AUB
< (f(z) € A) or (f(x) € B)
& (ze fY(A) or (ze f(B))
sre [T (AUfFY(B)

ve fHANB) <f(r)e ANB
& (f(z) € A) and (f(z) GB)
(:Uef ) and (:1:6 )
sre fTH(A)NfH(B)
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r e fHAY) &f(x) € A°
ef(r) ¢ A
< Not (f(z) € A)
& Not (z € f'(A))
sz ¢ fTH(A)
sre (f1(A)

Given a function f and a subset A of R, we define

f(A) ={f(z) |z e A}
Problem 8: Here’s a nice exercise using compactness and pre-images

(a) Show that if K is (covering) compact and f is continuous, then
f(K) is (compact)

(b) Is there a continuous function f with domain [0, 1] and range
(0,1) ?

(c¢) Show that any continuous function from [a,b] to R must be
bounded

Video: Continuity and Compactness

Solutions:

(a) STEP 1: Let U = {U,} be an open cover of f(K), and con-
sider U' = {f~1 (U,)}.


https://youtu.be/6Ql6TpnpwDE
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STEP 2: Then, since U, is open and f is continuous, f~1 (U,)
is open.

Moreover, by an analog of the above problem, we have
L}f%a»f1<Lﬂ@)

And, since U covers f(K), we have K C |J, U, andso f~' (U, Ua) 2

fHf(K))

And finally K C f~1(f(K)) since if x € K, then f(x) € f(K)
and so x € 71 f(K)).

Therefore, combining everything, we get
Jr' W)oK

STEP 3: So U’ covers K. But since K is compact, there is a
finite sub-cover

V' = {f_l(Um)’ Tt f_l(U”N)}
STEP 4:

Claim:

V=AU, ...,Uy}
Covers K

(Then we’re done because we found a finite sub-cover of U)
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But if y € f(K), then y = f(x) for some x € K, but since V
covers K, xz € f~1(U,,) for some k, and so y = f(z) € U,, € V
v O

(b) No since [0, 1] is compact, and so f([0,1]) would be compact,
but f([0,1]) = (0,1), which is not compact

(¢) Since [a, b] is compact and f is continuous, f([a,b]) is compact,
and therefore bounded, which means that f is bounded (that is
there is M > 0 such that |f(z)| < M for all x € [a, b])

Problem 9: Give a quick proof of the Extreme Value Theorem: If K
is a compact subset of R and f : K — R is continuous, then f attains
a maximum and a minimum

Solution: Since K is compact, and f is continuous, f(K) is com-
pact by the problem above. Since f(K) is compact, it is closed and
bounded, and therefore it has a least upper bound M = sup(f(K))

Let (y,) be a sequence in f(K) converging to M. By definition of
f(K), y, = f(z,) for some x,, € K

But since K is (covering) compact, K is sequentially compact, and
therefor (x,) has a convergent subsequence (z,,) that converges to
some xg € K

But since f is continuous, we get f(z,,) — f(zo).

But then since y,, converges to M, the subsequence y,, = f(x,,) con-
verges to M, so by uniqueness of limits, f(xg) = M, so f has a maxi-
mum M at xy € K, and similarly f has a minimum m at some other
point. [
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3. CONNECTEDNESS

Video: Connectedness

Let E be any subset of R (or of any metric space)

(1) E is disconnected if there are disjoint, nonempty, and
open subsets A and B of E such that AUB =F

(2) E is connected if it is not disconnected

For example, R is connected but (0,1) U (2, 3) is disconnected

Problem 10: Give a short proof of the Intermediate Value Theorem:
If f:[a,b] — R is continuous and ¢ is between f(a) and f(b), then
there is x € [a,b] with f(x) = ¢. Isn’t connectedness awesome?

Solution: Suppose not, then there is ¢ such that f(x) # ¢ for all
x € |a,b]. This means that for all x, either f(z) > c or f(x) < ¢, and
therefore [a,b] = AU B where

A={zelab] | fz) <c}=["((-00,0)
B ={z € [a,0] | f(z) > c} = f((c,0))

Now AU B = () and A and B are nonempty since either f(a) or f(b)
are in A or B

Moreover, A and B are open since f is continuous and (—oo, ¢) and
(¢, 0) are open.


https://youtu.be/-yMVjL-na-o
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And therefore [a,b] = AU B with A and B nonempty, open, and dis-
joint, which contradicts the fact that [a, b] is connected. =<« [

Problem 11: Suppose F is connected and f : E — R is continuous,
prove that f(FE) is connected.

Suppose F is connected by f(F) is not connected. Then there are A
and B nonempty, open, and disjoint with f(E£) =AU B.

But now consider A" = f~!1(A) and B’ = f~!(B). Then, since A and
B are open and f is continuous, we get A’ and B’ are open. Moreover:

ANB = fH AN (B)=f"(AnB)=f(ANB)=f'(0) =0

AUB = fH AU fY(B)=f1(AuB) = [ (f(E) =E
(The latter follows because for all x € F, f(x) € f(F) and therefore
v € fTHf(E)))

Finally, since A is nonempty there is a € A C f(F) and therefore
there is a’ € E with f(a’) € Aand so a’ € f71(A) = A and so A’ is
nonempty, and similarly B’ is nonempty.

Therefore A" and B’ are disjoint, nonempty, and open subsets of E
with AU B’ = E, but this implies that F is disconnected =<«

Problem 12: Prove that R is connected. More generally, it follows
that any interval I is connected.

Video: R is connected ]



https://youtu.be/bvIuMa6WTs4
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Solution: Suppose R is not connected. Then we can write R = AUB
with A, B nonempty, open and disjoint.

STEP 1: Since A and B are nonempty, fix a € A and b € B. WLOG
a < b (a# bsince A and B are disjoint) and consider

S={xz¢€lab]]a,z] C A}

Then S is nonempty since a € S and moreover S is bounded above by
b, hence S has a least upper bound M = sup(S)

STEP 2:

Claim: M ¢ B

Suppose M € B. Then since B is open, there is » > 0 such that
(M —r,M+71)CB.

Since M —r < M = sup(S), there is = € S such that z > M —r. Since
r € S, we get [a,x] C A, and so x € A. But, on the other hand x €
(M —r,M] C (M —r,M+r)C B, and therefore x € ANB = () =<«.
Hence, since M ¢ B and AU B = R, we must have M € A

STEP 3: Moreover M € S, because if M ¢ S, then [a, M|ZA, mean-
ing there is = € [a, M] with © ¢ A. But since M € A, we have
r < M = sup(S) and therefore there is y € S with y > z. But
by definition of S, we have [a,y] C A and so, since x < y we get
la, z] C [a,y] C A, which is a contradiction since = ¢ A.

STEP 4: Now M < b, because if b < M, then we get a contradiction
because, since M € S, we have [a, M] C A and so b € [a, M] C A so
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be A=«

STEP 5:
Claim: M ¢ A ]

Suppose M € A, then, since A is open, there is ' > 0 such that
(M —7r",M+1r") C A. Let M' =min{M + ', b}

Then M’ > M, and so M’ ¢ S because M = sup(.S).

Therefore, by definition of S, [a, M'|ZA, so there is some = € [a, M']
with x ¢ A. But since [a, M] C A (because M € §), we must have
x € (M, M']. Moreover, x # M + 1’ (because M + 1" € A but x ¢ A),
and therefore v € (M, M +1r') C A, sox € A=<«

Hence M ¢ A either, and therefore M is neither in A or in B, which
contradicts R = AU B =<«. ]

Let E be any subset of R (or of any metric space)
(1) A path in E is a continuous function v : [0,1] - E
(2) E is path-connected if for any pair of points a and b in
E, there is a path v with 7(0) = a and y(1) = b

Problem 13:
(a) Show that if £ is path-connected, then it is connected

(b) Show R is path-connected and deduce that it is connected.
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Solution: For (a), suppose E is path-connected but not connected.
Since F is not connected, there are A and B, nonempty, open, and
disjoint such that AU B = F.

Since A and B are nonempty, there isa € A and b € B.

Since 7 is path-connected, there is a path v : [0,1] — F with v(0) = a
and y(1) = b

Now consider A’ =y~ }(A) and B’ = v }(B). Then since A and B are
open and 7 is continuous, we get A" and B’ are open.

Moreover 0 € A’ since v(0) = a € A and therefore A’ is nonempty, and
similarly B’ is nonempty, and finally
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ANB =yHA'NB)
AUB =y 1A' UB)

fy_l(A/) ﬂ’y_l(B/) =ANBRB :(D
7_1(14/) U’Y_l(B,) = AUB = [07 1]

But therefore A" and B’ are disjoint, open, nonempty subsets of [0, 1]
whose union in [0, 1], which contradicts that [0, 1] is connected =<.

Hence F must be connected

For (b), let a,b € R and consider the path v(t) = (1 — t)a + tb, which
is continuous and has values in R and v(0) = a and v(1) =b v

Problem 14: The topologist’s sine curve is defined as

E=FUG = {(m,sin (é)) [z e (0, 1]} U{{0} x [~1,1]}

Show that E is connected but not path-connected.

Video: Topologist Sine Curve ]

Solution: Note: The solutions here are taken from this handout

Proof that F is connected:

Claim: If F is connected subset of R?, then F is connected

Proof: The result is true of F' = (), so assume F' # ().


https://youtu.be/pi-sS3lgszA
http://math.stanford.edu/~conrad/diffgeomPage/handouts/sinecurve.pdf
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Suppose F is connected but F is not connected. Then there are open
nonempty disjoint subsets A and B of F' such that AU B = F.

Consider A" = ANF and B'= BN F. Then A" and B’ are open in
F, disjoint, and their union is F'. But since F' is connected, we must
have A’ = F and B'=0 or A’ =( and B’ = F.

WLOG, assume A’ = F and B’ = ()

Notice that, since A° = B is open (the complement here is in F) we

get A is closed in F', hence there is some closed subset C' of R? with
A=CNF

But then F' = A’ C A_g C, and since F is the smallest closed subset
containing F', we get F' C (', and hence

A=CNnF=F
And since A is disjoint from B, we must get that B = () =<«. ]

To show that our topologist sine curve is connected, let

- {(em () e

Then F'is connected since it is path-connected (for a and b in (0, 1], just

consider the path y(t) = ((1 — t)a + tb,sin <m> )), and moreover

F = E (since sin (%) has the intermediate value property on R), and

therefore by the Claim, E is connected

Proof that F is not path-connected: Suppose not, then in partic-
ular is there is v : [0, 1] — E with v(0) € F and (1) € G.
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Because G is just a straight line (which is path-connected), we may
assume y(1) = (0,1).

Let € = %, then by continuity of v at 1, there is 6 > 0 such that

If [t—1]<d=1—86<t<1, then

(&) —~(D)] < % = |y(t) = (0,1)] < %

(Note: Here the absolute value for v is just the usual distance in R2.
Also the < ¢ isn’t really a problem)

Let v(1 —6) =: (x0,y0) and remember that (1) = (0, 1)

Since v = (71,72) is continuous, the first component 7 is continuous,
and therefore, by the Intermediate Value Theorem, v, attains all the
values between v, (1 — §) = xp and v,(1) = 0, and hence v ([1 — 4, 1])
contains the interval [0, x]

Hence for all 7 € (0, zg] there is some ¢ with v, (t) = 1 and therefore,
by definition, there is ¢ € [1 — ~, 1] such that

V(1) = (n(t),72(1)) = (xla Sin <i>)

T

2mn
but sin ( 1 ) = sin (—g) = —1

Z1

But now let 2, = s——, then for n large enough we have 0 < z; < x,
2

Hence the point (m%v —1) has the form f(¢) for some t € [1 — §, 1]
and hence ¢ is a distance of % away from (0, 1), which contradicts the
fact that the distance between ( ! ,—1) and (0,1) is at least 2

T
2mn— b
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4. HOMEOMORPHISMS

Video: Homeomorphism

Let A and B be two subsets of R (or any two metric spaces) and
f:A— B is a function, then:

(a) f is a homeomorphism if f is continuous, one-to-one,
onto, and f~! is continuous

(b) A and B are homeomorphic if there is a homemorphism
between A and B

(c) A topological property is a property that is preserved
under homeomorphisms

Problem 15:
(a) Show that there is a homeomorphism between (0, 1) and R. So
surprisingly (0, 1) and R are homeomorphic

(b) Deduce that boundedness is not a topological property.
Solution: For (a), consider f: (0,1) — R defined by

f(z) =tan™! (mz: — g)

Then, one can check that g(x) = w2 — 7 is continuous, one-to-one, and
onto, and its inverse is continuous and therefore a homeomorphism.


https://youtu.be/40S3yeDwwYc
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Also since tan : (—%, %) — R is continuous and one-to-one and onto R

(you can show this using the fact that tan(z) — £oo near £7 and an
analog of the Intermediate Value Theorem), its inverse tan™!

tinuous, and therefore a homeomorphism

1S con-

Hence f(x) is a homeomorphism, being a composition of two homeo-
morphisms, and therefore (0,1) and R are homeomorphic.

For (b), since (0,1) is bounded but R is unbounded, boundedness is
not a topological property.

Problem 16:

(a) Show that if f: I — f(I) is continuous and one-to-one, then f
is a homeomorphism

(b) Show that if K is covering compact and f : K — f(K) is
continuous and one-to-one, then f is a homeomorphism

(c) Let ST be the unit circle in R%. Consider the map f : [0,27) —
St by f(t) = (cos(t),sin(t)). You may assume that f is con-
tinuous, one-to-one, and onto. Show that f~! is not continuous
and hence not a homeomorphism.

Solution:

(a) By assumption, f is continuous, one-to-one, and onto its image
f(I). Moreover, we have shown in class that f~! is continuous,
hence f is a homeomorphism.

(b) Since f is continuous, one-to-one, and onto its image, it suffices
to show that f~! is continuous.
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Claim: f is continuous if and only if for each closed set

C, fHC) is closed

This follows because if f is continuous and C' is closed, then
C° is open, and therefore f~1(C¢) is open, hence (f~1(C)) is
open, so f~1(C) is closed v/

Conversely, if f71(C) is closed whenever C' is closed, then if U
is any open set, then U¢ is closed, so by assumption f~1(U°)
is closed, and therefore (ffl(U))C is closed, and so f~1(U) is
open, so f is continuous v’

Now suppose C' is an arbitrary closed subset of K, then since
K is compact, C'is a closed subset of a compact set, and hence
compact. Therefore, since C is compact and f is continuous,
f(C) is compact, and hence closed.

Therefore, whenever C' is closed, f(C) is closed, and by the

claim below, it follows that (ffl)_1 (C) = f(C) is closed, and
so f~!is continuous since f was arbitrary

Claim: (f~1)7'(C) = £(C)

Proof:
(O ef ) e

C
ef(f(x) e f(O)
sz e f(C)W

T € (ffl)

]
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= (a2 L) o e 1)

Then (z,) converges to (1,0), but f~'(z,) = 27 — L converges

to 21 # f~1((1,0)) = 0.

(c) Let

Hence f~! is not continuous.

Problem 17:

(a) Show that homeomorphisms map compact sets onto compact
sets. Hence compactness is a topological property. Deduce that
[0,1] and R are not homeomorphic

(b) Show that homeomorphisms map connected sets onto connected
sets. So connectedness is a topological property. Deduce that
0, 27] and the unit circle S* in R? are not homeomorphic

(c¢) Show openness and closedness are topological properties. De-
duce that (0,1) and [0, 1] (considered as subsets of R) are not
homeomorphic

Solution:

(a) This just follows because if K is compact and f is continuous,
then f(K) is compact. Therefore, since [0, 1] is compact but R
is not compact, the two spaces are not homeomorphic.

(b) This just follows because if E is connected and f is continuous,
then f(F) is connected.
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It is not hard to show that if f : ' — F' is a homeomorphism
and zo € E, then f : E\ {xq} — F\{f(zo)} is also a homeo-
morphism.

Now if [0, 27r] and S were homeomorphic with homeomorphism
f, then [0, 27\ {1} and S™\ {f(1)} would also be a homeomor-
phism. But this can’t be because [0, 27|\ {1} = [0, 1)U (1, 2] is
disconnected, whereas S' minus a point is still connected! =<

(c) Suppose A is open and f is a homemomorphism, then f(A) =
(f_l)_1 (A) is open since f~! is continuous and A is open. Sim-
ilarly, if B is closed, then f(B) = ( f’*l)_1 (B) is closed since
f~1is continuous and B is closed

Now Since (0,1) is open in R and [0, 1] is not open in R, those
two cannot be homeomorphic.
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