MATH 251 - QUIZ 5 - SOLUTIONS

Question 1:

(1) $F(x, y, z)=(x+y+z)^{2}-\left(x^{2}+y^{2}+z^{2}\right)$
(2) Point: $(2,2,-1)$
(3) Normal Vector:

$$
\begin{gathered}
F_{x}=2(x+y+z)-2 x \\
F_{y}=2(x+y+z)-2 y \\
F_{z}=2(x+y+z)-2 z \\
\nabla F=\left\langle F_{x}, F_{y}, F_{z}\right\rangle=\langle 2(x+y+z)-2 x, 2(x+y+z)-2 y, 2(x+y+z)-2 z\rangle \\
\mathbf{n}=\nabla F(2,2-1) \\
=\langle 2(2+2-1)-2(2), 2(2+2-1)-2(2), 2(2+2-1)-2(-1)\rangle \\
=\langle 2(3)-4,2(3)-4,2(3)+2\rangle \\
=\langle 2,2,8\rangle
\end{gathered}
$$

(4) Therefore, the equation of the tangent plane is

$$
2(x-2)+2(y-2)+8(z+1)=0
$$

Question 2:

STEP 1: Critical Points

$\left\{\begin{array}{l}f_{x}=4 x^{3}-4 x=4 x\left(x^{2}-1\right)=0 \Rightarrow x=0 \text { or } x^{2}=1 \Rightarrow x=0 \text { or } x= \pm 1 \\ f_{y}=3 y^{2}-3=0 \Rightarrow y^{2}=1 \Rightarrow y= \pm 1\end{array}\right.$
Date: Friday, October 8, 2021.

This gives us 6 critical points: $(0, \pm 1),(1, \pm 1),(-1, \pm 1)$
STEP 2: Second derivatives

$$
\begin{gathered}
D(x, y)=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
12 x^{2}-4 & 0 \\
0 & 6 y
\end{array}\right| \\
D(0,1)=\left|\begin{array}{cc}
-4 & 0 \\
0 & 6
\end{array}\right|=-24<0
\end{gathered}
$$

Hence f has a saddle point at $(0,1)$

$$
D(0,-1)=\left|\begin{array}{cc}
-4 & 0 \\
0 & -6
\end{array}\right|=24>0 \text { and } f_{x x}(0,-1)=-4<0
$$

Hence f has a local max at $(0,-1)$

$$
D(1,1)=\left|\begin{array}{ll}
8 & 0 \\
0 & 6
\end{array}\right|=48>0 \text { and } f_{x x}(1,1)=8>0
$$

Hence f has a local min at $(1,1)$

$$
D(1,-1)=\left|\begin{array}{cc}
8 & 0 \\
0 & -6
\end{array}\right|=-48<0
$$

Hence f has a saddle point at $(1,-1)$

$$
D(-1,1)=\left|\begin{array}{ll}
8 & 0 \\
0 & 6
\end{array}\right|=48>0 \text { and } f_{x x}(-1,1)=8>0
$$

Hence f has a local min at $(-1,1)$

$$
D(-1,-1)=\left|\begin{array}{cc}
8 & 0 \\
0 & -6
\end{array}\right|=-48
$$

Hence f has a saddle point at $(-1,-1)$

STEP 3: Conclusion

Saddle Points at:	$(0,1),(1,-1),(-1,-1)$
Local Max at:	$(0,-1)$
Local Min at:	$(1,1),(-1,1)$

