
TOPOLOGY

In this exciting topology adventure, we generalize many of the results
we’ve seen to Rk or more general spaces called metric spaces. Even
though this is more abstract, it really gives us a nice perspective into
what concepts in this course are essential, and which ones are not.

1. Metric Spaces

Video: Metric Spaces

The single, most important identity with absolute values that we have
learned so far is the triangle inequality, which states:

Triangle Inequality

|x+ y| ≤ |x|+ |y|

And one of its consequences was:

Corollary

|a− c| ≤ |a− b|+ |b− a|

Interpretation: The third leg of a triangle is shorter than the sum
of the other two legs.
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https://youtu.be/tIGWpmTlC38
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There are other properties of |x| that we have used, even though we
didn’t really think of them:

For all x, y, z ∈ R,

(1) |x− y| ≥ 0

(2) |x− y| = 0 ⇔ x = y

(3) |x− y| = |y − x|

(4) |x− z| ≤ |x− y|+ |y − z|

Main Idea: What if we forget everything about R and absolute val-
ues, except the four properties above? Then we get an extremely useful
object called a metric space:
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Definition:

If S is any set, thena, (S, d) is called a metric space if the fol-
lowing 4 properties hold. Here x, y, z ∈ S

(1) d(x, y) ≥ 0

(2) d(x, y) = 0 ⇔ x = y

(3) d(x, y) = d(y, x)

(4) d(x, z) ≤ d(x, y) + d(y, z)
aHere d is any function from S × S to R

Notice the similarity between d(x, y) and |x− y|, so in fact d (called a
metric) is just a generalization of the absolute value.

To show how useful and powerful this concept is, let me give you 10
examples of metric spaces.

Note: The first 5 examples are important for your homework, but you
can skip the last 5 if you wish, although they are pretty cool.

Example 1:

(R, d) with d(x, y) = |x− y|

Example 2:

(R2, d2)

d2((x1, x2), (y1, y2)) =
√

(y1 − x1)2 + (y2 − x2)2
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Example:

d2((1, 2), (3, 4)) =
√

(3− 1)2 + (4− 2)2 =
√
8

Note: Because this is such a natural distance function on R2, from
now on we’ll write d instead of d2.

Note: This can be generalized to Rk:

d2((x1, . . . , xk), (y1, . . . , yk)) =
√

(y1 − x1)2 + · · ·+ (yk − xk)2

Example 3:

(R2, d1)

d1((x1, x2), (y1, y2)) = |y1 − x1|+ |y2 − x2|
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In other words, just add the sum of the lengths of the legs of the triangle

Note: This is sometimes called the taxicab (or Manhattan) metric.
Because taxicabs in New York can’t just go diagonally from (x1, x2)
to (y1, y2) without crashing into buildings, they have to go right, and
then up.

Example 4:

(R2, d∞)

d∞((x1, x2), (y1, y2)) = max {|y1 − x1|+ |y2 − x2|}

Note: In other words, just calculate the length of the biggest leg
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Example 5: Discrete Metric

(R, d) with

d(x, y) =

{
0 if x = y

1 if x ̸= y

(This is Example 10 in the video)
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In other words, with the metric d, all the points in R are distance 1
apart. Freaky, isn’t it? But it’s a great source of counterexamples!

Note: The discrete metric seems weird for R, but is more natural in
other examples:
Example: S = {1, 2, 3} with the discrete metric. Then S is just an
equilateral triangle!

Example 6:

S = Set of bounded sequences in R with

d((sn), (tn)) = sup {|sn − tn| | n ∈ N}
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In other words, look at the largest possible difference between sn and tn.

Note: The following is NOT a metric on S:

d((sn), (tn)) =
∞∑
n=1

|sn − tn|

Because d((sn), (tn)) might be ∞ (for instance with (sn) = (1, 1, 1, . . . )
and (tn) = (0, 0, 0, . . . )), but for a metric we must have d(x, y) < ∞
for all x and y.

Example 7:

S = Continuous functions on [a, b] (see Chapter 3) with

d(f, g) = max {|f(x)− g(x)| | x ∈ [a, b]}

This is a continuous analog of the previous example
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Example 8:

Same, but this time

d(f, g) =

∫ b

a

|f(x)− g(x)| dx
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Example 9:

Same, but this time

d(f, g) =

√∫ b

a

|f(x)− g(x)|2 dx

This is a very natural metric on S if you remember that an integral is
just a sum (so here we take the square root of the sum of squares). It’s
also nice because S becomes a Hilbert space (in case you know what
that is)

Example 10:

If A and B are two subsets of R (or of any metric space), then

d(A,B) = inf {|a− b| | a ∈ A, b ∈ B}

(Analogy: Think like two lovebirds on two different continents A and
B who try to communicate with each other).
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So you can even measure how far whole sets are, how cool is that?

Take-away: Everything we’re going to show in this trilogy holds for
ALL 10 examples at once, so we’re really killing 10 birds with one
stone! THIS is the power of abstract mathematics!

2. Convergence

Video: Convergence in Rk

The neat thing about metric spaces is that it’s really easy to generalize
the notion of convergence to those spaces.

Recall:

If (sn) is a sequence in R, then sn → s if for all ϵ > 0 there is N
such that if n > N , then |sn − s| < ϵ.

It’s exactly the same for metric spaces, except you replace the absolute
value with d !

https://youtu.be/cMmX-JiPMcU
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Definition:

If (S, d) is a metric space and (sn) is a sequence in S, then sn → s
if for all ϵ > 0 there is N such that if n > N , then d(sn, s) < ϵ

That said, even though the definition is the same, the way of thinking
is a bit different. Here the good region is a ball (Points that are at
most ϵ apart from s) instead of a strip and the sequence gets closer
and closer to s.

3. Convergence in Rk

Since Rk is a metric space, in order to define convergence in Rk, we
just need to apply the definition above to the space Rk.
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Notation:

(1) Points in Rk will be denoted by (x1, . . . , xk)

(2) The distance between (x1, . . . , xk) and (y1, . . . , yk) is de-
fined as

d((x1, . . . , xk), (y1, . . . , yk)) =
√

(x1 − y1)2 + · · ·+ (xk − yk)2

(3) Sequences in Rk will be written as

(x(n)) = (x
(n)
1 , . . . , x

(n)
k )

So the first term is (x
(1)
1 , . . . , x

(1)
k ), the second term is

(x
(2)
1 , . . . , x

(2)
k ) and so forth.

With the notation as above, we can now define what it means for a
sequence (x(n)) in Rk to converge to x.

Definition:

If (x(n)) is a sequence in Rk, then we say (xn) converges to x if
for all ϵ > 0 there is N such that if n > N , then d(xn, x) < ϵ
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Luckily we never have to use this to prove that x(n) converges to x,
because we have the following really useful result.

Motivation: Consider the following sequence in R2:

x(n) =

(
1

n
, e−n

)
=

(
x
(n)
1 , x

(n)
2

)
Then x(n) → (0, 0) = x.

How did we figure this out? Well, notice that x
(n)
1 = 1

n → 0 and

x
(n)
2 = e−n → 0, and from this we concluded that x(n) → x = (0, 0).

In other words, to figure out if x(n) → x, it is enough to check if each

component x
(n)
1 and x

(n)
2 converges to x1 and x2 respectively, where

x = (x1, x2). And in fact, this is always true:

Theorem:

If (x(n)) = (x
(n)
1 , . . . , x

(n)
k ) is a sequence in Rk, then

(x(n)) → x ⇔ x
(n)
j → xj (for each j = 1, . . . , k)

Where x = (x1, . . . , xk)

Note: In terms of triangles, this makes sense: This just says that if
the legs of the triangle are small, then the hypotenuse is small. And
conversely, if the hypotenuse is small, then each leg is small as well.
The picture below illustrates the case k = 2:
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In order to prove this, we need a small lemma, which is kind of like a
Squeeze Theorem, but for distances:

Lemma: [Squeeze Theorem for Distances]

If (x1, . . . , xk) and (y1, . . . , yk) are points in Rk, then for all j =
1, . . . , k, we have:

|xj − yj| ≤ d(x, y) ≤
√
kmax {|x1 − y1| , . . . , |xk − yk|}

Where x = (x1, . . . , xk) and y = (y1, . . . , yk)
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This Lemma says two things: First of all, it says that the hypotenuse
d of the triangle is bigger than each of its legs |xj − yj|. On the other
hand, the hypotenuse cannot be that big either. It is always smaller
than a constant (Here

√
k, think for instance

√
2 in the case of R2)

times the biggest leg of the triangle. In the picture above, the red
diagonal is smaller than the green vertical line.

Proof: On the one hand, we have:

d((x1, . . . , xk), (y1, . . . , yk)) =
√

(x1 − y1)
2︸ ︷︷ ︸

≥0

+ · · ·+ (xj − yj)2 + · · ·+ (xk − yk)
2︸ ︷︷ ︸

≥0

≥
√

(xj − yj)2

= |xj − yj|✓
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On the other hand, let M = max {|x1 − y1| , . . . , |xk − yk|}, then each
|xj − yj| ≤ M

d((x1, . . . , xk), (y1, . . . , yk)) =
√

(x1 − y1)
2︸ ︷︷ ︸

≤M2

+ · · ·+ (xk − yk)
2︸ ︷︷ ︸

≤M2

≤
√
M 2 +M 2 + · · ·+M 2

≤
√
kM2

=
√
kM

=
√
kmax {|x1 − y1| , . . . , |xk − yk|}✓ □

Proof of Theorem: We need to show that

(x(n)) → x = (x1, . . . , xk) ⇔ x
(n)
j → xj (for each j = 1, . . . , k)

(⇒) Let ϵ > 0 be given, then since (x(n)) → x, there is N such that if
n > N , then d(x(n), x) < ϵ. But then, for the same N , if n > N , then
by the Lemma above, for each j, we have

∣∣∣x(n)j − xj

∣∣∣ ≤ d((x
(n)
1 , . . . , x

(n)
k ), (x1, . . . , xk)) = d((x(n)), x) < ϵ

Hence
∣∣∣x(n)j − xj

∣∣∣ < ϵ and therefore xnj converges to xj ✓

(⇐) Let ϵ > 0 be given.

Then, since x
(n)
1 converges to x1, there is N1 such that if n > N1, then∣∣∣x(n)1 − x1

∣∣∣ < ϵ√
k
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Since x
(n)
2 converges to x2, there is N2 such that if n > N2, then∣∣∣x(n)2 − x2

∣∣∣ < ϵ√
k

And in general, since x
(n)
j converges to xj, there is N2 such that if

n > Nj, then
∣∣∣x(n)j − xj

∣∣∣ < ϵ√
k

Now if N = max {N1, . . . , Nk}, then if n > N , by the Lemma, we have

d((x(n)), x) =d((x
(n)
1 , . . . , x

(n)
k ), (x1, . . . , xk))

≤
√
kmax


∣∣∣x(n)1 − x1

∣∣∣︸ ︷︷ ︸
< ϵ√

k

, . . . ,
∣∣∣x(n)k − xk

∣∣∣︸ ︷︷ ︸
< ϵ√

k


<
√
k

(
ϵ√
k

)
=ϵ

Hence (x(n)) converges to x ✓ □

4. Rk is complete

Video: Rk is complete

As a neat consequence of the above, we get that Rk is complete. To
do this, let’s quickly adapt the definition of Cauchy and completeness
to Rk (the same definition is valid for metric spaces)

https://youtu.be/qpaTehfTiKc
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Definition:

If (x(n)) is a sequence in Rk, then we say (x(n)) isCauchy if, for all
ϵ > 0, there is N such that if m,n > N , then d((x(n)), (x(m))) < ϵ

In other words, the terms of the sequence x(n) eventually get closer and
closer together. Notice that this definition makes no mention of limits.

Note: Using almost the exact same proof as above, one can show that
(x(n)) is Cauchy (in Rk) if and only if each component (xnj ) is Cauchy
(in R)

Theorem:

Rk is complete, meaning every Cauchy sequence in Rk converges.

Proof: Easy! We’ve done the hard part above.
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Let (xn) be a Cauchy sequence in Rk.

Then, by the above, each component (x
(n)
j ) is Cauchy in R (for j =

1, . . . , k)

But since R is complete, each x
(n)
j converges to some xj.

But then by the Theorem above, (x(n)) converges to x, where x =
(x1, . . . , xk) □

5. Bolzano-Weierstraßfor Rk

Video: Bolzano-Weierstraß in Rk

Lastly, we can generalize the Bolzano-Weierstraß Theorem to Rk,
which says that every bounded sequence has a convergent subsequence.

Bounded just means that every component is bounded:

Definition:

If (x(n)) is a sequence in Rk, then (x(n)) is bounded if there is

M > 0 such that
∣∣∣x(n)j

∣∣∣ < M for all n (and all j = 1, . . . , k)

Basically, all it means is that the length of each leg of the triangle is
≤ M .

https://youtu.be/sV3HjpKpj6s
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It also implies that the sequence (x(n)) is inside a box (of side M −
(−M) = 2M), but we won’t really need that fact.

Bolzano-Weierstraß for Rk:

Every bounded sequence in Rk has a convergent subsequence

(Strictly speaking, the figure above should be in Rk)
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Proof: Basically apply Bolzano-Weierstraß to each component.

STEP 1: Let (x(n)) be a bounded sequence in Rk

Then there is M > 0 such that for all j = 1, . . . , k,
∣∣∣x(n)j

∣∣∣ ≤ M .

But with j = 1 we get
∣∣∣x(n)1

∣∣∣ ≤ M , so (x
(n)
1 ) is bounded, and hence

by Bolzano-Weierstraß for R we get that (x
(n)
1 ) has a convergent sub-

sequence (xnk
1 ) that converges to some x1 ∈ R.

STEP 2:

Note: We can’t just apply Bolzano-Weierstraß to the whole sequence

(x
(n)
2 ) because that might a priori give us a subsequence (x

(nk)
2 ) for a

different nk, which we don’t want (it’s kind of like getting an toptrain
for a different track nk)

To get around this, consider the subsequence (x
(nk)
2 ) of x

(n)
2 , where nk

is as in STEP1. Then since
∣∣∣x(n)2

∣∣∣ ≤ M (by boundedness with j = 2),

in particular the same is true for x
(nk)
2 and therefore (x

(nk)
2 ) is bounded

in R and therefore has a subsequence (x
(nkl

)

2 ) that converges to some
x2 ∈ R as l → ∞ (think of an express-toptrain)
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But notice then that (x
(nkl

)

1 ) is a subsequence of (x
(nk)
1 ) which therefore

also converges to x1 (the toptrain converges, and hence the express-
topone converges as well) and hence

(x
(nkl

)

1 , (x
(nkl

)

2 )) → (x1, x2)

STEP 3: Continuing this way at most k times (you can do an in-
ductive construction if you want), we therefore obtain a subsequence
of (x(n)) with the property that each component converges to some
xj ∈ R (for j = 1, . . . , n). So if you let x = (x1, . . . , xk), then that
subsequence of (x(n)) converges to x □

Let me now give you a taste of topology, exploring the notions of open
and closed sets.

6. Open Sets
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Video: Open Sets

For this, we first need to define what an open ball is.

Let (S, d) be a metric space.

Definition:

The open ball centered at x and radius r is:

B(x, r) = {y ∈ S | d(x, y) < r}

That is, the set of points that are a distance of at most r away from x.

Example :

In R2, B((1, 2), 3) is the open disk centered at (1, 2) and radius 3

https://youtu.be/WcxBy4cUzWo
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Example :

In R2, B(x, r) = (x− r, x+ r)

In other words, in R, B(x, r) is just an interval! And this makes sense,
because B(x, r) is just the set of points that are at most r away from
x

Using this, we can define the concept of an open set:
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Definition:

Let E be a subset of S. Then we say E is open if for all x ∈ E
there is r > 0 such that B(x, r) ⊆ E.

In other words, for every point in E there is some tiny ball that is
contained in E.

Interpretation: For every point x in E, you can move around x a lit-
tle bit and still be in your set. So there is some wiggle room/breathing
room around every point.

Example 1:

(a, b) is open

This is because if x ∈ (a, b), then for some r small enough we have
B(x, r) = (x− r, x + r) ⊆ (a, b). In fact, just pick r to be the smaller
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of a+x
2 and x+b

2 , and you can check that this r works.

Example 2:

In any metric space, B(x, r) is always open

That’s why it’s called an open ball1

Non-Example 3:

[a, b] is not open.

For x = a, no matter how small r is, B(a, r) = (a− r, a+ r)��⊆[a, b].

Note: Think of a here as being the edge of a cliff. If you move slightly
to the left of a, you’ve fallen off the cliff. This is not so for open sets:

1In case you’re curious as to why, here’s a proof: If y ∈ B(x, r), let r′ = r − d(x, y) > 0, then if
z ∈ B(y, r′), then d(z, x) ≤ d(z, y) + d(y, x) < r′ + d(x, y) = r− d(x, y) + d(x, y) = r so z ∈ B(x, r)
and hence B(y, r′) ⊆ B(x, r)
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No matter what point you’re at, you can safely move a bit to the left
and to the right.

Similarly, [a, b) and (a, b] are not open

Basic Properties:

(1) S and ∅ are open

(2) The union of any collection of open sets is open

(3) The intersection of finitely many open sets is also open

Warning: The intersection of infinitely open sets isn’t necessarily
open:

Non-Example: Consider Un =
(
− 1

n ,
1
n

)
in R

So for instance U1 = (−1, 1), U2 =
(
−1

2 ,
1
2

)
etc.
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Then each Un is open, but the intersection of all Un is {0}, which is
not open.

Note: Any set S (not necessarily a metric space) with a collection of
open sets satisfying (1)− (3) is called a topological space. A metric
space is an example of a topological space, but not every topological
space is a metric space. The study of topological spaces is called topol-
ogy. It is a math subject area of its own interest, but also a great ally
in analysis; one can prove many interesting results using it. Topology
(from topos logos = study of places) cares more about the shape of a
set rather than distances.

Proof:

(1) Skip (should be immediate)

(2) Note: Since the union here isn’t necessarily finite (or even
countably infinite), we need to do this in full generality: Sup-
pose U is the union of Uα, where each Uα is open.
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Let x ∈ U , want to show B(x, r) ⊆ U for some r > 0.

But by definition of union, we have x ∈ Uα for some Uα. Since
Uα is open, there is some r > 0 with B(x, r) ⊆ Uα ⊆ U . There-
fore B(x, r) ⊆ U ✓

(3) Let U be the intersection of U1, U2, . . . , Un where each k =
1, . . . , n, Uk is open.

Suppose x ∈ U , need to show there is r > 0 such that B(x, r) ⊆
U
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By definition of intersection, for each k, x ∈ Uk. Therefore,
since Uk is open, there is rk > 0 with B(x, rk) ⊆ Uk.

Let r = min {r1, . . . , rn} > 0. Then for all k, r ≤ rk and there-
fore B(x, r) ⊆ B(x, rk) ⊆ Uk.

Hence B(x, r) ⊆ Uk for all k, so, by definition of intersection,
B(x, r) ⊆ U □
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Definition:

We say x ∈ E is an interior point of E if B(x, r) ⊆ E for some
r > 0.

The set of all interior points of E is denoted by E◦ (the interior
of E)

Note: It’s similar to the definition of open set except here we’re fixing
a point x. Before, this was true for all x.

Example 1:

If E = [0, 1], then E◦ = (0, 1)

Because for any point other than 0 or 1, we can fit a ball inside [0, 1].
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Example 2:

If E = Q, then E◦ = ∅

Because for any x ∈ Q, there is no ball (x− r, x+ r) that lies entirely
within Q. This is because there’s always at least one irrational number
in (x− r, x+ r), no matter what x and r are.

Example 3:

(0, 1)◦ = (0, 1)

Because for all x ∈ (0, 1), there is r > 0 with B(x, r) ⊆ (0, 1).
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And in fact the above is true for any open set:

Fact:

E is open if and only if E = E◦

7. Closed Sets

Video: Closed Sets

On the other side of the spectrum comes the notion of a closed set,
which has to do with limits of sequences.

Definition:

E ⊆ S is closed if, whenever (sn) is a sequence in E that con-
verges to s, then s ∈ E

In other words, E must contain all the limits of all the sequences in it.
Or, in terms of our analogy, any train in E must have a destination in
E.

https://youtu.be/YAfgVkh59Qo
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Non-Example 1:

(0, 1) is not closed

For instance, sn = 1
n (with n ≥ 2) is a sequence in (0, 1) that converges

to 0, which is not in (0, 1).

In some sense, you can escape (0, 1) by taking limits, like a prisoner
getting out of prison.

Similarly, [0, 1) and (0, 1] are not closed.

WARNING: The opposite of ‘closed’ isn’t ‘open’ ! For instance, [0, 1)
is not closed, but it’s not open either! So there are sets that are neither
open nor closed, but there are also clopen sets that are both open and
closed.

Example 2:

[0, 1] is closed

Any convergent sequence in [0, 1] must converge to somewhere in [0, 1];
there is no escaping [0, 1], even if we take limits
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Example 3:

The closed ball is closed

B(x, r) = {y ∈ S | d(x, y) ≤ r}

Example 4:

From section 11, if (sn) is a sequence, then the set S of all limit
points (or subsequential limits) of (sn) is closed

Although it is not quite true that the opposite of closed is open, we do
have the following fact:
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Fact:

E is closed if and only if Ec is open

(Recall that Ec is the complement of E, that is x ∈ Ec if and only if
x /∈ E)

Proof: We will show: E is not closed if and only if Ec is not open.

(⇒) Suppose E is not closed.

We need to show Ec is not open, that is, there is s ∈ Ec such that for
all r > 0, B(s, r)��⊆Ec.
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Since E is not closed, there is a sequence (sn) in E with sn → s but
s /∈ E, so s ∈ Ec.

By definition of sn → s, for every r > 0, there is N such that if n > N ,
d(sn, s) < r, which implies sn ∈ B(s, r).

But then B(s, r)��⊆Ec since there is an element sn ∈ B(s, r) with
sn /∈ Ec (because sn ∈ E).
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Therefore Ec is not open. ✓

(⇐) Suppose Ec is not open.

We need to show E is not closed, that is there is a sequence (sn) is E
with sn → s but s /∈ E.

Since Ec is not open, in particular there is s ∈ Ec such that for all n,
B
(
s, 1n

)
��⊆Ec.
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Therefore, for every n there is sn ∈ B
(
s, 1n

)
(so sn converges to s) such

that sn is not in Ec, that is sn ∈ E.

Therefore (sn) is a sequence in E that converges to s. But since s ∈ Ec,
we have s /∈ E, and therefore E is not closed ✓ □
Just as before, we have the following:

Basic Properties:

(1) The intersection of any number of closed sets is closed

(2) The union of finitely many closed sets is closed

This actually follows from the analogous statements about open sets,
along with the fact that E is closed ⇔ Ec is open.

WARNING: (2) isn’t true if you take infinite unions.

Non-Example: Let En = [ 1n , 1].
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Then the union of En is (0, 1] (we exclude 0 because it is in none of
the En above), which is not closed.

Definition:

We say s is a limit point of E if there is a sequence (sn) in E
that converges to s.

The set of all limit points of E is denoted by E (the closure of
E)

Note: The book writes E− instead of E.

In some sense E is the set of all destinations of all trains in E, all the
places you can go to.

Example 1:

(0, 1) = [0, 1]
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This is because the limit s of any sequence (sn) in (0, 1) is either in
(0, 1), or is 0, or is 1.

Example 2:

In Rk, the closure of the open ball B(x, r) is the closed ball

B(x, r) = {y ∈ S | d(x, y)≤r}

Note: In general, it is not true that the closure of B(x, r) is the same
as {y ∈ S | d(x, y) ≤ r} (see homework), but it is true for Rk. Since

we’ll be dealing mostly with Rk anyway, we’ll use the notation B(x, r)
to mean both the closure and the closed ball.
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Example 3:

Q = R

Because for every every a ∈ R there is a sequence (rn) of rational num-
bers that converges to a (see section 11)

Example 4:

[0, 1] = [0, 1]

This is because any convergent sequence in [0, 1] must converge to
somewhere in [0, 1].

And in fact, this is true in general, for any closed sets, since every
point of a closed set must be a limit point.

Fact:

Fact: E is closed if and only if E = E.

Finally, we can define the boundary of E, which is the analog of a skin
to a body:
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Definition:

The boundary of E is ∂E = E\E◦

(Makes sense, the skin is the body minus the flesh)

Example 1:

∂[0, 1] = [0, 1]\[0, 1]◦ = [0, 1]\(0, 1) = {0, 1} (Endpoints)
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Example 2:

In Rk,

∂B(x, r) = {y | d(x, y) = r} = Sphere of radius r

But this is not true in general metric spaces
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Example 3:

∂Q = Q\Q◦ = R\∅ = R

WOW that’s thick!

8. Finite Intersection Property

Video: Finite Intersection Property

A very elegant property of closed sets is the finite intersection prop-
erty, which is as follows.

Theorem:

Let (Fn) be a decreasing sequence (meaning F1 ⊇ F2 ⊇ . . . ) of
nonempty, closed, and bounded subsets of Rk. Then F =

⋂∞
n=1 Fn

is also closed, bounded, and nonempty.

https://youtu.be/PybSLopesaE
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(Think of Fn as nested Russian Matryoshka dolls)

Note: This is FALSE if the sets are not closed

Non-Example: Let Fn = (0, 1n)

Then
⋂∞

n=1 Fn = ∅, because 1
n → 0 and moreover 0 is in none of the Fn.
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Remark: This is a very special feature of Rk and isn’t necessarily
valid for more general topological spaces. So the proof will use a tool
that is very unique to Rk.

Proof: Suppose (Fn) is a decreasing sequence of nonempty, closed,
and bounded subsets of Rk and let F =

⋂∞
n=1.

F is closed: This is because the intersection of any number of closed
sets is closed (see previous section)

F is bounded: This is because, F ⊆ F1 and F1 is bounded by as-
sumption. (see the picture after the theorem)

F is nonempty: For each n = 1, 2, . . . , Fn is nonempty, so let xn be
an element of Fn.

Consider the sequence (xn). Since for all n, xn ∈ Fn ⊆ F1, xn ∈ F1

for all n, and since F1 is bounded (by assumption), then the sequence
(xn) is bounded (in Rk).

Therefore, by the Bolzano-Weierstrass (xn) has a subsequence (xnk
)

that converges to some x ∈ Rk.
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Claim: x is in F

Note: Then we would be done because, since x ∈ F , F is nonempty.

To show x ∈ F , we must show that for all n0 ∈ N, x ∈ Fn0
.

Let n0 be arbitrary.

Then, for any k ≥ n0, we have nk ≥ n0 (since the toptrain is faster
than the regular train)
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Therefore, Fnk
⊆ Fn0

(since sets Fn are decreasing).

Therefore, for every k ≥ n0 xnk
∈ Fnk

(by definition) ⊆ Fn0
and so

xnk
∈ Fn0

.

But then this means that all the terms of the sequence (xnk
) are even-

tually in Fn0

Therefore, since F0 is closed (by assumption) the limit x of (xnk
) is

also in Fn0
, hence x ∈ Fn0

.

Hence, since n0 was arbitrary we get x ∈ F , so F is nonempty. ✓ □
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9. The Cantor Set

Video: The Cantor Set

Let me quickly introduce you to the single most important set in Anal-
ysis: The Cantor Set.

This set is constructed in stages.

STEP 1: Start with F1 = [0, 1]

STEP 2: Remove the middle third
(
1
3 ,

2
3

)
of F1 to get two pieces

F2 =
[
0, 13

]
∪
[
2
3 , 1

]

STEP 3: Remove the middle of each piece of F2 to get 4 pieces
F3 =

[
0, 19

]
∪
[
2
9 ,

1
3

]
∪
[
2
3 ,

7
9

]
∪
[
8
9 , 1

]

https://www.youtube.com/watch?v=4ZkDiEdmfd8
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STEP 4: Continue so on and so forth: Given Fn, define Fn+1 by re-
moving the middle third of each sub-interval of Fn

And in this way we get a decreasing sequence of intervals F1 ⊇ F2 ⊇ · · ·
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Definition:

The Cantor set is

F =
∞⋂
n=1

Fn

Neat Facts:

The Cantor set is

F =
∞⋂
n=1

Fn

(1) F is closed

(2) F is nonempty

(3) F has size 0

(4) F ◦ = ∅

(5) F is compact (see below)
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(6) F is uncountable

Proof:

(1) F is closed because it is the intersection of closed sets

(2) F is nonempty by the finite intersection property

(3) Since each Fn consists of 2n−1 pieces of length
(
1
3

)n−1
, each Fn

has size 2n−1 ×
(
1
3

)n−1
=

(
2
3

)n−1
which goes to 0

(4) Suppose x ∈ F ◦, then there is r > 0 such that B(x, r) = (x −
r, x + r) ⊆ F . But since (x− r, x + r) has size 2r > 0, F must
also have size at least 2r which contradicts the fact that F has
size 0

(5) This is because F is closed and bounded, so by the Heine-Borel
Theorem (see below), F is compact

(6) F is uncountable (see below)

Aside: Also F is perfect and totally disconnected (whatever those
terms mean). Moreover, it turns out that any metric space can be
thought of a subset of the Cantor set.

Discussion: More interestingly, there’s a very natural characteriza-
tion between the Cantor set and ternary expansions (= expansions in
base 3):



TOPOLOGY 55

Definition:

Decimal expansion: An expression like 0.1248 . . . where you
use digits from 0 to 9

Binary expansion: An expression like 0.11011 . . . where you
use only digits 0 and 1, used a lot in computer science

Ternary Expansion: An expression like 0.120211020 . . . where
you only use digits of 0, 1, 2

The ternary expansion of 1
3 is 0.1 and the ternary expansion of 2

3 is
0.2. So by removing the middle term in F1 to get F2, we’re essentially
throwing away all the numbers of the form 0.1⋆⋆⋆, so whose first digit
is 1

Note: Technically 0.1 is in F2, but you can just write that as 0.022222 · · ·

Similarly, in F2 we’re throwing away numbers of the form 0.01⋆⋆⋆ and
0.21 ⋆ ⋆⋆, so whose second digit is 1
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So really, at each step, we’re throwing away any number that has a 1
in its expansion, therefore:

Theorem:

F is just the set of all numbers between 0 and 1 that have no 1
in their expansion

Cool Facts:
For instance 0.022022 is in F, but 0.02210202 is not in it.

What makes this super neat is that the function f(x) = x
2 turns ele-

ments in F into numbers with binary expansions; for instance f(0.22202) =
0.11101
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Since every element of [0, 1] has a binary expansion,f is actually a bi-
jection (= one-to-one correspondence) betweenF and [0, 1]

Therefore F has the same cardinality as [0, 1], and is hence uncountable!

As a grand finale of our metric space extravaganza, let’s discuss one
of the most powerful concepts in Analysis: Compactness. This notion
may seem very abstract at first, but it has very powerful consequences.

10. Covers and Subcovers

Video: Compactness

In order to define compactness, we first need to define the notion of an
open cover.

Intuitively: An open cover of E is a family of open sets that covers
E, as in the picture below. Here E represents the (light) oval region
and U is the collection of all the colored disks U .

https://youtu.be/6CUr7dS1KeE
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Definition:

Let U be a family of open subsets U of a metric space. Then U
is an (open) cover for E if

E ⊆
⋃

{U | U ∈ U}

That is: If x ∈ E, then there is some U ∈ U with x ∈ U .

What this is saying is that E is included in the union of all the U ′s, so U
literally covers E. Think of the U ’s as patches that cover the region E.

Example 1:

Let E = R, then the following is an open cover for E:

U =
{
(m− 1,m+ 1) : m ∈ Z

}
=
{
. . . , (−3,−1), (−2, 0), (−1, 1), (0, 2), (1, 3), . . .

}
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Example 2:

E = R2

U =
{
B((m,n), 1) | m,n ∈ Z

}
That is, the family of open balls of radius 1 and centered at pairs of
integers covers R2

Some covers are better than others! Imagine for instance that each
patch U costs $100 apiece. Then ideally one would like to cover E
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with as few patches as possible. This is the idea behind a sub-cover:

Definition:

V is a subcover of U if V is a subset of U that also covers E

Suppose for instance that, in the picture above, U consists of all the
colored disks, and V consists of all the disks except for the purple and
brown one. Then V is a subcover of U since V is a subset of U that
also covers E

Interpretation: In some sense, V is better than U . V still does the
job of covering E, but with fewer elements, so it is more cost-efficient
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Example:

Let E = [0, 1] and consider

U =
{
(−1, 1), (0, 2), (1, 3)

}

Then the following is a subcover of U

V = {(−1, 1), (0, 2)}
Note: In some sense, the (1, 3) in U is redundant; one wouldn’t really
pay an extra $100 for it because (−1, 1) and (0, 2) are already enough
to cover E.

Definition:

A finite subcover V is a subcover with finitely many elements

Example: In the above example,

V =
{
(−1, 1), (0, 2)

}
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is a finite subcover of U because it is a subcover that only has 2 ele-
ments, namely (−1, 1) and (0, 2)

But

V =
{
. . . , (−2, 0), (−1, 1), (0, 2), (1, 3), (2, 4), . . .

}

would not be a finite subcover of U because (1) it has infinitely many
elements, and (2) it’s not even a subset of U !

11. Definition and Examples

We are now ready for the definition of compactness:

Definition:

A set E is compact if every open cover U of E has a finite
subcover V
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In other words, compact sets are cost-effective: We never need infin-
itely many patches to cover E. There will always be a finite sub-cover,
no matter how one covers it. Imagine covering an object with a deck
of cards; if the object is compact, you can always cover it with all but
finitely many cards.

Note: In practice, it’s hard to show that a set is compact, because
you’d have to show that every cover has a finite sub-cover. It is much
easier to show that sets are not compact, as in the examples below.
That said, at the end of today we’ll find a very elegant criterion to
show that a set is compact.

Non-Example 1:

E = R is not compact.
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All we need to do is to find one cover that doesn’t work; that is one
cover that does not have a finite subcover.

Consider the following cover U of R:

U =
{
(−1, 1), (−2, 2), . . .

}
=

{
(−n, n) : n ∈ N

}

Suppose U had a finite sub-cover

V =
{
(−n1, n1), . . . , (−nk, nk) : ni ∈ N

}
Let N = max {n1, . . . , nk}

Then union of V is (−N,N).

But since V covers R, R must be contained in the union of V , so
R ⊆ (−N,N), which gives a contradiction since N + 1 ∈ R but
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N +1 /∈ (−N,N) ⇒⇐. Hence U has no finite sub-cover, and therefore
E = R is not compact. □

Non-Example 2:

E = (0, 1) is not compact.

Consider the following cover U of (0, 1):

U =

{(
1

n
, 1

)
: n ≥ 2

}
=

{(
1

2
, 1

)
,

(
1

3
, 1

)
,

(
1

4
, 1

)
, . . .

}

Suppose U has a finite sub-cover V , where

V =

{(
1

n1
, 1

)
, . . . ,

(
1

nk
, 1

)}
Let N = max {n1, . . . , nk} > 0

Then the union of all the sets in V is
(
1
N , 1

)
̸= (0, 1) since x = 1

N+1 /∈(
1
N , 1

)
even though x ∈ (0, 1), so V cannot even cover E ⇒⇐ □
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But then what is a compact set? This is hard to answer, but luckily, at
least in the case of Rk, there’s a wonderful theorem called the Heine-
Borel Theorem, which we’ll discuss at the end, that will take care of
that.

Example 3:

The following sets are compact in Rk:

(1) Closed intervals [a, b]

(2) Boxes like [1, 2]× [3, 4]

(3) Closed balls B(x, r) in Rk

12. Properties of Compactness

Video: Compactness Properties

https://youtu.be/mMr-tkf0ULY
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In this section, we show that compact sets enjoy some nice properties,
namely that they must be closed and bounded.

Definition

A (nonempty) set E is bounded if there is x ∈ E and r > 0 such
that E ⊆ B(x, r).

That is, E is included in some large ball.

Non-Example:

Rk is not bounded since there’s no way to fit all of Rk inside a
ball.

Fact 1:

If E is compact, then E is bounded

Note: This is yet another reason why R (or Rk) are not compact.
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Proof: Suppose E is compact. If E = ∅ then we’re done, so assume
E ̸= ∅ and let x ∈ E.

Consider the following cover U of E:

U = {B(x, n) | n ∈ N}

Since E is compact, U has a finite sub-cover:

V =
{
B(x, n1), . . . , B(x, nk) : ni ∈ N

}
Let N = max {n1, . . . , nk} > 0
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Then, on the one hand, the union of V is B(x,N).

On the other hand, because V is a sub-cover, that union must contain
E, and therefore E ⊆ B(x,N).

But then we found r > 0 such that E ⊆ B(x, r), namely r = N , and
hence E is bounded □

Fact 2:

If E is compact, then E is closed

Note: This is yet another reason why (0, 1) is not compact; it is not
even closed.

Proof: To show E is closed, it is enough to show that Ec is open.
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Suppose x ∈ Ec. In order to show Ec is open, we need to find r such
that B(x, r) ⊆ Ec.

Consider the following clever cover of E:

U =
{
Un | n ∈ N

}
Where

Un =
{
y | d(y, x) > 1

n

}
Here Un consists of all the points that are at least 1

n away from x.
Think of x as being a repellent; no one wants to get close to x
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Then, since each U c
n =

{
y | d(y, x) ≤ 1

n

}
(which is closed), each Un is

open.

Moreover the union of the Un is {x}c (see picture below), which there-
fore covers E given that x /∈ E.

Since E is compact, U has a finite sub-cover

V =
{
Un1

, . . . , Unk
| ni ∈ N

}
Let N = max {n1, . . . , nk} > 0. Then the union of V is
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UN =

{
y | d(y, x) > 1

N

}

But since V covers E, it follows that E is included in the union of
V = UN , that is E ⊆ UN . Therefore, taking complements U c

N ⊆ Ec

(see picture above).

But by definition of UN , we have:

U c
N =

{
y | d(y, x) ≤ 1

N

}
⊆ Ec

But then notice that

B

(
x,

1

N

)
= {y | d(y, x)<r} ⊆ {y | d(y, x)≤r} ⊆ Ec

Hence, if we let r = 1
N , we get B(x, r) ⊆ Ec. This is exactly what

we needed to show: We assumed x ∈ Ec and we needed to find some
r > 0 such that B(x, r) ⊆ Ec.

Hence Ec is open, so E is closed □
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13. The Heine-Borel Theorem

Video: Heine-Borel Theorem

From the above, we know that if a set is compact, then it is closed
and bounded. You may ask: Is the converse true? If E is closed and
bounded, is it compact? In general, the answer is NO, as you’ll see on
the Homework, or in the following video: Not Compact.

However, in the special case of Rk, the following Heine-Borel Theorem
says the answer is YES:

Heine-Borel Theorem:

A subset E of Rk is compact if and only if it is closed and bounded.

Examples:

The following subsets are compact, since they are closed and
bounded:

(1) Closed intervals [a, b] in R

(2) Boxes like [1, 2]× [3, 4] (see below)

(3) Closed balls B(x, r) in Rk

(4) Spheres in Rk

Warning: As said above, the Heine-Borel theorem only holds for Rk.
It is NOT true in general!

Proof:

https://youtu.be/4jaox_jqwGM
https://youtu.be/aqKBIhcy-RU
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(⇒) Done above ✓

(⇐) Suppose E is closed and bounded.

STEP 1: First of all, since E is bounded, there is x ∈ E and r > 0
large such that E ⊆ B(x, r).

Moreover, every ball is included in a box F = [a1, b1]× [a2, b2]× [ak, bk]
for some a1, . . . , ak and b1, . . . , bk. Namely if x = (x1, . . . , xk), then
you can check ai = xi − r and bi = xi + r works (for i = 1, . . . , k), see
picture below

Therefore, we get E ⊆ B(x, r) ⊆ F , so E ⊆ F , where F is a box

STEP 2: To continue, we need the following fact, which is shown on
your homework:
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Fact:

A closed subset of a compact set is compact.

Therefore, if we show that the box F is compact, then since E is closed,
it would follow that E is compact, and we would be done. ✓

So all that’s left to show is the following:

Lemma:

Boxes in Rk are compact

STEP 3: Before we prove this, we need a couple of general properties
of boxes. Suppose:

F = [a1, b1]× . . . [ak, bk]

Definition:

The diameter of F is

δ = d((a1, . . . , ak), (b1, . . . , bk)) =
√
(b1 − a1)2 + · · ·+ (bk − ak)2
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Note that δ is the largest possible distance between points in F , and
therefore (here B denotes the closed ball)

Remark:

For any x ∈ F , F ⊆ B(x, δ)

Proof of Lemma: Let F = [a1, b1]× · · · × [ak, bk] be a box in Rk

STEP 1: Suppose, for sake of contradiction, that F is not compact.
Then there is an open cover U of F that has no finite sub-cover.

The trick here is to split F into 2k sub-boxes of diameter δ
2 as in the

picture below. Here we illustrate the case k = 2, where we get 22 = 4
sub-boxes (= quadrants), but in the case k = 3 we would get 23 = 8
octants, and in general in Rk we would get 2k sub-boxes.
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If each of the 2k sub-boxes of F had a finite sub-cover, then by taking
the union of the 2k finite subcovers, you would get that F has a finite
sub-cover ⇒⇐.

Hence one of the sub-boxes, let’s call it F1 cannot be have a finite
sub-cover.
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Note that F1 ⊆ F

STEP 2: Now since F1 is a box of diameter δ
2 , F1 is the union of 2k

(sub-)sub-boxes of diameter δ
4 .

Repeating the argument above, we get there is a (sub-sub) box F2 of
diameter δ

4 that doesn’t have a finite sub-cover U . Note that F2 ⊆ F1
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STEP 3: Continuing in this fashion, we obtain a decreasing sequence
F1 ⊇ F2 ⊇ F3 ⊇ . . . of sub-boxes such that each Fn has diameter δ

2n

and that doesn’t have a finite sub-cover.

But since each Fn is nonempty, bounded, and closed (since boxes are
closed), by the Finite Intersection Property (also known as the Cantor
Intersection Theorem),

⋂∞
n=1 Fn is nonempty, so there is x ∈

⋂∞
n=1 Fn.

STEP 4: Since U covers F and x ∈ F , there must be U ∈ U such
that x ∈ U .

https://youtu.be/PybSLopesaE
https://youtu.be/PybSLopesaE
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But since U is open, there is r > 0 such that B(x, r) ⊆ U .

Now let n be large enough so that δ
2n < r.

Now recall, by the remark (in the green box) preceding this proof,
every set is included in the closed ball of radius its diameter. So since
x ∈ Fn (by definition of intersection) and the diameter of Fn is δ

2n , we

get Fn ⊆ B(x, δ
2n ) , and therefore, since r > δ

2n , we have

Fn ⊆ B(x,
δ

2n
) ⊆ B(x, r) ⊆ U
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Hence Fn ⊆ U .

But then this means that the one-element set V = {U} covers Fn,
which contradicts the fact that, by construction, Fn doesn’t have a
finite sub-cover (Remember that we chose Fn so that there is no finite
sub-cover that covers Fn) ⇒⇐

And this, in turn, contradicts the assumption that U does not have a
finite subcover. Therefore U does have a finite subcover, and so F is
compact □

14. Problems

Problem 1:

Definition:

If (S, d) is a metric space, then the (open) ball centered at x and
radius r is

B(x, r) = {y ∈ S | d(x, y) < r}
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Draw a picture of the unit ball B((0, 0), 1) (the open ball centered at
(0, 0) and radius 1) of each of the following metric spaces:

(a) (R2, d2) where d2(x,y) =
√

(y1 − x1)2 + (y2 − x2)2

(b) (R2, d1) where d1(x,y) = |y1 − x1|+ |y2 − x2|

(c) (R2, d∞) where d∞(x,y) = max {|y1 − x1| , |y2 − x2|}

(d) Repeat (a)-(c) but with R3 instead of R2

Problem 2:

Find a metric space (S, d) for which the boundary ∂B(x, r) of B(x, r) is
NOT equal to the sphere of radius r at x, that is {y ∈ S | d(x, y) = r}.

Problem 3:

Definition:

If (S, d) is a metric space, then we say E is dense in S if E = S
(The book uses E− instead of E)

(a) Prove, using the definition above, that Q is dense in R (with
the usual metric).

Note: You may use the fact from section 11 that for any a ∈ R,
there is a sequence (rn) of rational numbers converging to a.

Definition:

(S, d) is separable if there is a countable subset E of S
that is dense in S

(b) Deduce from (a) that R is separable
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(c) Use Lemma 13.3 to show that Rk is separable

Problem 4: Consider the Cantor set F in Example 5. Use induction

on n to show that Fn consists of 2n−1 intervals, each of length
(
1
3

)n−1

Then calculate the total length of Fn, and deduce that the total length
of F is 0.

Problem 5: Use the finite intersection property to prove that [0, 1]
cannot be written as a countably infinite union of disjoint closed subin-
tervals

Problem 6: Show that if (S, d) is a complete metric space and {Un}∞n=1

is a countable collection of open dense subsets of S, then
⋂∞

n=1 Un is
dense in S.

Problem 7: Show that every metric space (S, d) can be completed,
just like we completed Q to get R

Problem 8: Use the definitions below to show the following (do not
use the definitions in the book)

E is closed if and only if Ec is open

Definition:

E is open if for all x ∈ E there is r > 0 such that B(x, r) ⊆ E
E is closed if, whenever (sn) is a sequence in E that converges
to s, then s ∈ E

Problem 9:
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Definition:

E is sequentially compact if every sequence (sn) in E has a
convergent subsequence

Show that if E is compact, then it is sequentially compact (see hints)

Problem 10:

Definition:

A set E is totally bounded if, for every r > 0, you can cover E
with finitely many balls B(x, r) (where x ∈ E)

Show that if E is compact, then E is totally bounded (this is a one-
liner)

Problem 11: Show that if E is totally bounded, then it is separable
(= that it has a countable subset F that dense)

Problem 12: Prove directly (without Heine-Borel) that [a, b] is com-
pact
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