LECTURE: EULER’S METHOD (II)

1. ERROR

Euler’s method generally gives you a good approximation to your so-
lution y. What does “good” mean in this context? For this, we have

to talk about the error
Notice: There are two quantities at play here:

(1) Our approximations

Yo U1 Y2 YN

(2) The values of the actual solution y

y(to) y(t) y(t2) y(tw)

It makes sense to compare the two:

1

2 LECTURE: EULER’S METHOD (II)

E(h) = max {|y1 —y(t)|, ly2 —y(t2)|, .., lyny —y(tn)[}

Think of the error as the “worst possible scenario” If just one of the y;
is far from y(t;) then |y; — y(¢x)| is big, so the error is big Conversely,
if the error is small, then all the y; are close to y(tx)

In the picture above, the error is the length of the thick red line. Also,
we don’t include yy because y(ty) = yo anyway

LECTURE: EULER’S METHOD (II) 3

Ideally: we want the error to be small if A is small, that is:

im F =
fim E(h) =0

And in fact this is true with FEuler’s method:

For Euler’s method, there is a constant C' > 0 such that for all A

[E(h)| < Ch

In particular this implies limy,_,o E(h) = 0, which is what we want

Why? This really just follows from Taylor expansion:

Recall: Taylor Expansion

flz+h) = f(z)+hf'(z) + O

. ; h?
Note: O(h*) here just means h* terms, such as % f"(z)

y(t1) =y(to + h) = y(to) + hy/ (to) + O(h?)
25y (to) + hf (y(to), to) + O(h?)
=yo + hf(vo, to)j+0(h2)

-~

Y1
=y1 + O(h?)
Hence y(t1) —y1 = O(h?) = |y(t1) — | < CR?

Note: Here we get Ch?, but that’s also because we had y(tg) = yo. In
general we need to repeat this IV times for all the terms y(¢) which,
instead of Ch?, gives NCh? = (22) Ch? = C(b—a)h = Ch

———

C

4 LECTURE: EULER’S METHOD (II)

2. PROBLEMS WITH EULER
Welcome to the dark side of Euler! What could possibly go wrong?

Issue 1: Sensitivity to Initial Conditions

The solution is y = ¢! (using integrating factors)

If you use Euler’s method, then you’ll see that the true solutions and
your approximations start deviating after a while!

Approximate Solution with Forward Euler's Method

1.0

0.5

o
o

Value of y

|
o
wn

=1.04

_1.5 -

T T T T T
0 1 2 3 4 5
Value of t

LECTURE: EULER’S METHOD (II) 5

What went wrong? The reason is that the general solution of the
ODE (without intial conditions) is

y=-¢e "'+ Cée

If you use ezactly y(0) = 1 then C' = 0 and you get y = e~ *. But the
problem is that computers don’t use exact values, but approximate
values, like 3(0) = 0.999

Even a tiny rounding error like that will cause C' # 0, and in the end
we end up getting an extra e’ term. So the approximate solution might

look like e~ + 0.02¢" which blows up for large t.

Issue 2: Instability

Sometimes the solutions can oscillate, like the following:

The exact solution is y = e~ 23!, but if you apply Euler with h = 1,

then the solution oscillates and is not close to the exact solution.

LECTURE: EULER’S METHOD (II)

s Approximate Solution with Forward Euler's Method
L]

10 A

Value of y
L]

_10 -

T T
4 6
Value of t

8 10

If you apply Euler with a relatively smaller value of h like h = 0.3 here,
or any h with (2.3)h < 1 then the solution decays to 0

Approximate Solution with Forward Euler's Method

109 @

0.8 1

value of y
o
[=3]
i

b
s
i

0.2

0.0 A

T T T T T
6 8 10

Value of t

LECTURE: EULER’S METHOD (II) 7

Here the behavior is heavily dependent on the value of h you use;
sometimes you need to make h really small to make this work, which
is called instability.

3. VARIATIONS OF EULER

To get around this, applied mathematicians sometimes use variations
of Euler’s method, such as

Backward Euler:

Yn+1 = Yn + hf(tn—Ha yn—H)

This is an implicit method, because we first have to solve for v, first
before we can apply it

Multistep Method:

3 1
Yn+1 = Yn + Ehf(tna yn) - éhf(tn—la yn—l)

Multistep because it uses both present v, and past 1,1 values here

Runge-Kutta Methods:

h h
arIn a tna n
5 Yn T 5 y))

The idea is to evaluate f here at several points.

Yn+1 = Yn + hf (tn +

Although more complicated, the methods achiever a higher accuracy
and resolve some of the problems discussed.

8 LECTURE: EULER’S METHOD (II)

4. DSOLVE APP

Here is a cool program in Python that solves ODE symbolically.

t*) + 2ty = cos(t)

Notice this is the same as %y’ + 2ty — cos(t) = 0
from sympy import *

t=symbols('t"')

y=Function('y')

deq=t**2xdiff (y(t),t)+2*xt*xy(t)-cos(t)

ysoln=dsolve(deq,y(t))
print(ysoln)

Remarks:
e deq is the ODE, make sure to write it in the form = 0
® xx means “square”
e dsolve is the program that solves our differential equation. It
has two inputs: The first one is the differential equation, the
second one is our unknown

e Print prints out the solution

e To write things like €, use exp(2 * t)

LECTURE: EULER’S METHOD (II) 9

What this says here is that the solution is y(t) = C+:12H(t)

Example 4:

{ty' + (t+ 1)y =2te™
y(1) =2

To specify initial conditions, you need to add ics = {y(1) : 2} as a third
input in your dsolve command

from sympy import x*
t=symbols('t')
y=Function('y")

deg=t*diff (y(t),t)+(t+1)*y(t)-2xt*exp(-t)
ysoln=dsolve(deq,y(t),ics={y(1):2})
print(ysoln)

So here the solution is y = (t2 — 1+ 2@) ?

Example 5:
Plot the solution of

(—y* —2ty) + (3+) ¢y =0
y(0) =1

Warning: Do not forget about the .rhs in your plot command!

from sympy import x*
from matplotlib import pyplot as plt

10 LECTURE: EULER’S METHOD (II)

t=symbols('t')

y=Function('y")

deq=(-y (£) **2-2%t*xy(t)) + (3+t**2)*diff(y(t),t)
ysoln=dsolve(deq,y(t) ,ics={y(0):1})
print(ysoln)

plot(ysoln.rhs, (t,-5,5),ylim=[-20,20])

= 20 -
=
15 A

10

-=10 1

_15 .

—-20 -

LECTURE: EULER’S METHOD (II) 11

5. SECOND-ORDER ODE

Welcome to the magical world of second-order ODE! Those are equa-
tions involving y” instead of just ¢/

Existence-Uniqueness: The theorem is the same as for first-order
ODE, the only difference is that now we need to specify an initial po-
sition y(0) and an initial velocity 3'(0)

Example 6:

y// :23// 4t (y2)
y(0) =2
y/(0) =3 NEW

Theorem:
Consider the ODE

y' =f(y,y',t)
y(O) =Yo
y'(0) =vg

Where yy and vy are given

If f and its partial derivatives are continuous, then there is a
unique solution y = y(t) for ¢ near 0

Fun Application: A nice visualization of this is the game Angry
Birds, where you determine the initial position and the initial velocity
of a bird and try to find a trajectory that goes through a pig. Non-
existence would mean the bird blows up, and non-uniqueness would

https://www.youtube.com/watch?v=GvA9bUhtjIw
https://www.youtube.com/watch?v=GvA9bUhtjIw

12 LECTURE: EULER’S METHOD (II)

mean that one bird splits into two birds (two trajectories).

Application: Second-order ODE are used to study harmonic oscilla-
tors in physics; there will be a whole lecture dedicated to them.

	1. Error
	2. Problems with Euler
	3. Variations of Euler
	4. dsolve app
	5. Second-Order ODE

