
LECTURE: EULER’S METHOD (II)

1. Error

Euler’s method generally gives you a good approximation to your so-
lution y. What does “good” mean in this context? For this, we have
to talk about the error

Notice: There are two quantities at play here:

(1) Our approximations

y0 y1 y2 yN

(2) The values of the actual solution y

y(t0) y(t1) y(t2) y(tN)

It makes sense to compare the two:

1

2 LECTURE: EULER’S METHOD (II)

Definition: Error

E(h) = max {|y1 − y(t1)| , |y2 − y(t2)| , . . . , |yN − y(tN)|}

Think of the error as the “worst possible scenario” If just one of the yk
is far from y(tk) then |yk − y(tk)| is big, so the error is big Conversely,
if the error is small, then all the yk are close to y(tk)

In the picture above, the error is the length of the thick red line. Also,
we don’t include y0 because y(t0) = y0 anyway

LECTURE: EULER’S METHOD (II) 3

Ideally: we want the error to be small if h is small, that is:

lim
h→0

E(h) = 0

And in fact this is true with Euler’s method:

Fact:

For Euler’s method, there is a constant C > 0 such that for all h

|E(h)| ≤ Ch

In particular this implies limh→0E(h) = 0, which is what we want

Why? This really just follows from Taylor expansion:

Recall: Taylor Expansion

f(x+ h) = f(x) + hf ′(x) +O(h2)

Note: O(h2) here just means h2 terms, such as h2

2 f
′′(x)

y(t1) =y(t0 + h) = y(t0) + hy′(t0) +O(h2)
ODE
= y(t0) + hf(y(t0), t0) +O(h2)

= y0 + hf(y0, t0)︸ ︷︷ ︸
y1

+O(h2)

=y1 +O(h2)

Hence y(t1)− y1 = O(h2) ⇒ |y(t1)− y1| ≤ Ch2

Note: Here we get Ch2, but that’s also because we had y(t0) = y0. In
general we need to repeat this N times for all the terms y(tk) which,
instead of Ch2, gives NCh2 =

(
b−a
h

)
Ch2 = C(b− a)︸ ︷︷ ︸

C

h = Ch

4 LECTURE: EULER’S METHOD (II)

2. Problems with Euler

Welcome to the dark side of Euler! What could possibly go wrong?

Issue 1: Sensitivity to Initial Conditions

Example 1: {
y′ =y − 2e−t

y(0) =1

The solution is y = e−t (using integrating factors)

If you use Euler’s method, then you’ll see that the true solutions and
your approximations start deviating after a while!

LECTURE: EULER’S METHOD (II) 5

What went wrong? The reason is that the general solution of the
ODE (without intial conditions) is

y = e−t + Cet

If you use exactly y(0) = 1 then C = 0 and you get y = e−t. But the
problem is that computers don’t use exact values, but approximate
values, like y(0) = 0.999

Even a tiny rounding error like that will cause C ̸= 0, and in the end
we end up getting an extra et term. So the approximate solution might
look like e−t + 0.02et which blows up for large t.

Issue 2: Instability

Sometimes the solutions can oscillate, like the following:

Example 2: {
y′ =− 2.3y

y(0) =1

The exact solution is y = e−2.3t, but if you apply Euler with h = 1,
then the solution oscillates and is not close to the exact solution.

6 LECTURE: EULER’S METHOD (II)

If you apply Euler with a relatively smaller value of h like h = 0.3 here,
or any h with (2.3)h < 1 then the solution decays to 0

LECTURE: EULER’S METHOD (II) 7

Here the behavior is heavily dependent on the value of h you use;
sometimes you need to make h really small to make this work, which
is called instability.

3. Variations of Euler

To get around this, applied mathematicians sometimes use variations
of Euler’s method, such as

Backward Euler:

yn+1 = yn + hf(tn+1, yn+1)

This is an implicit method, because we first have to solve for yn+1 first
before we can apply it

Multistep Method:

yn+1 = yn +
3

2
hf(tn, yn)−

1

2
hf(tn−1, yn−1)

Multistep because it uses both present yn and past yn−1 values here

Runge-Kutta Methods:

yn+1 = yn + hf

(
tn +

h

2
, yn +

h

2
f(tn, yn)

)
The idea is to evaluate f here at several points.

Although more complicated, the methods achiever a higher accuracy
and resolve some of the problems discussed.

8 LECTURE: EULER’S METHOD (II)

4. dsolve app

Here is a cool program in Python that solves ODE symbolically.

Example 3:

t2y′ + 2ty = cos(t)

Notice this is the same as t2y′ + 2ty − cos(t) = 0

from sympy import *

t=symbols('t')

y=Function('y')

deq=t**2*diff(y(t),t)+2*t*y(t)-cos(t)

ysoln=dsolve(deq,y(t))

print(ysoln)

Remarks:

• deq is the ODE, make sure to write it in the form = 0

• ⋆⋆ means “square”

• dsolve is the program that solves our differential equation. It
has two inputs: The first one is the differential equation, the
second one is our unknown

• Print prints out the solution

• To write things like e2t, use exp(2 ⋆ t)

LECTURE: EULER’S METHOD (II) 9

What this says here is that the solution is y(t) = C+sin(t)
t2

Example 4: {
ty′ + (t+ 1)y =2te−t

y(1) =2

To specify initial conditions, you need to add ics = {y(1) : 2} as a third
input in your dsolve command

from sympy import *

t=symbols('t')

y=Function('y')

deq=t*diff(y(t),t)+(t+1)*y(t)-2*t*exp(-t)

ysoln=dsolve(deq,y(t),ics={y(1):2})

print(ysoln)

So here the solution is y =
(
t2 − 1 + 2e

)
e−t

t

Example 5:

Plot the solution of{(
−y2 − 2ty

)
+
(
3 + t2

)
y′ =0

y(0) =1

Warning: Do not forget about the .rhs in your plot command!

from sympy import *

from matplotlib import pyplot as plt

10 LECTURE: EULER’S METHOD (II)

t=symbols('t')

y=Function('y')

deq=(-y(t)**2-2*t*y(t)) + (3+t**2)*diff(y(t),t)

ysoln=dsolve(deq,y(t),ics={y(0):1})

print(ysoln)

plot(ysoln.rhs,(t,-5,5),ylim=[-20,20])

LECTURE: EULER’S METHOD (II) 11

5. Second-Order ODE

Welcome to the magical world of second-order ODE! Those are equa-
tions involving y′′ instead of just y′

Existence-Uniqueness: The theorem is the same as for first-order
ODE, the only difference is that now we need to specify an initial po-
sition y(0) and an initial velocity y′(0)

Example 6:
y′′ =2y′ + t

(
y2
)

y(0) =2

y′(0) =3 NEW

Theorem:

Consider the ODE
y′′ =f(y, y′, t)

y(0) =y0

y′(0) =v0

Where y0 and v0 are given

If f and its partial derivatives are continuous, then there is a
unique solution y = y(t) for t near 0

Fun Application: A nice visualization of this is the game Angry
Birds, where you determine the initial position and the initial velocity
of a bird and try to find a trajectory that goes through a pig. Non-
existence would mean the bird blows up, and non-uniqueness would

https://www.youtube.com/watch?v=GvA9bUhtjIw
https://www.youtube.com/watch?v=GvA9bUhtjIw

12 LECTURE: EULER’S METHOD (II)

mean that one bird splits into two birds (two trajectories).

Application: Second-order ODE are used to study harmonic oscilla-
tors in physics; there will be a whole lecture dedicated to them.

	1. Error
	2. Problems with Euler
	3. Variations of Euler
	4. dsolve app
	5. Second-Order ODE

