## LECTURE: THE LAPLACE TRANSFORM

## 1. Introduction

Welcome to the Queen of Applied Math: the Laplace Transform.
It transforms functions of time $t$ into functions of frequency $s$


## Definition:

$$
\mathcal{L}\{f(t)\}=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

Intuitively: For every $s, \mathcal{L}\{f\}$ gives you a weighted average of $f$ with weight $e^{-s t}$ (which becomes smaller and smaller)


Demo: $e^{-s t}$ for various values of $s$
2. Examples

Video: Laplace Transform Marathon (courtesy blackpenredpen)
Example 1:

$$
\mathcal{L}\{1\}
$$

$$
\begin{aligned}
\mathcal{L}\{1\} & =\int_{0}^{\infty} 1 e^{-s t} d t=\int_{0}^{\infty} e^{-s t} d t=\left[\frac{e^{-s t}}{-s}\right]_{t=0}^{t=\infty} \\
& =\left(\lim _{t \rightarrow \infty} \frac{e^{-s t}}{-s}\right)-\frac{e^{-s(0)}}{-s}=0-\left(\frac{1}{-s}\right)=\frac{1}{s}
\end{aligned}
$$

$$
\mathcal{L} \text { transforms } 1 \text { into } \frac{1}{s}
$$



Example 2:

$$
\mathcal{L}\left\{e^{2 t}\right\}
$$

$$
\begin{aligned}
\mathcal{L}\left\{e^{2 t}\right\} & =\int_{0}^{\infty} e^{2 t} e^{-s t} d t \\
& =\int_{0}^{\infty} e^{(2-s) t} d t \\
& =\left[\frac{e^{(2-s) t}}{2-s}\right]_{t=0}^{t=\infty} \\
& =\left(\lim _{t \rightarrow \infty} \frac{e^{(2-s) t}}{2-s}\right)-\frac{e^{(2-s)(0)}}{2-s} \\
& =0-\frac{1}{2-s} \quad(\text { Assume } s>2) \\
& =\frac{1}{s-2}
\end{aligned}
$$

## Fact:

$$
\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a} \quad s>a
$$



## Example 3:

$$
\mathcal{L}\left\{e^{-3 t}\right\}=\frac{1}{s-(-3)}=\frac{1}{s+3}
$$

Example 4:

$$
\mathcal{L}\{\cos (2 t)\} \text { and } \mathcal{L}\{\sin (2 t)\}
$$

$$
\mathcal{L}\{\cos (2 t)\}=\int_{0}^{\infty} \cos (2 t) e^{-s t} d t
$$

Either integrate by parts twice (boo!) or:
Cool Peyam Trick: Consider

$$
\mathcal{L}\left\{e^{(2 t) i}\right\}
$$

STEP 1: On the one hand, by definition of $e^{(2 t) i}$

$$
\mathcal{L}\left\{e^{(2 t) i}\right\}=\mathcal{L}\{\cos (2 t)+i \sin (2 t)\}=\mathcal{L}\{\cos (2 t)\}+i \mathcal{L}\{\sin (2 t)\}
$$

STEP 2: On the other hand, using $\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$ with $a=2 i$ we get

$$
\begin{gathered}
\mathcal{L}\left\{e^{2 t i}\right\}=\mathcal{L}\left\{e^{(2 i) t}\right\}=\frac{1}{s-2 i}=\left(\frac{1}{s-2 i}\right)\left(\frac{s+2 i}{s+2 i}\right) \\
=\frac{s+2 i}{(s-2 i)(s+2 i)}=\frac{s+2 i}{s^{2}-(2 i)^{2}}=\frac{s+2 i}{s^{2}+4} \\
\mathcal{L}\{\cos (2 t)\}+i \mathcal{L}\{\sin (2 t)\}=\frac{s}{s^{2}+4}+\left(\frac{2}{s^{2}+4}\right) i
\end{gathered}
$$

STEP 3: Comparing the real and imaginary parts, we get

$$
\begin{aligned}
\mathcal{L}\{\cos (2 t)\} & =\frac{s}{s^{2}+4} \\
\mathcal{L}\{\sin (2 t)\} & =\frac{2}{s^{2}+4}
\end{aligned}
$$

## Fact:

$$
\begin{aligned}
& \mathcal{L}\{\cos (a t)\}=\frac{s}{s^{2}+a^{2}} \\
& \mathcal{L}\{\sin (a t)\}=\frac{a}{s^{2}+a^{2}}
\end{aligned}
$$




## Example 5:

$$
\mathcal{L}\left\{2 \sin (3 t)+4 e^{5 t}\right\}
$$

The Laplace Transform is linear, so this is just:

$$
2 \mathcal{L}\{\sin (3 t)\}+4 \mathcal{L}\left\{e^{5 t}\right\}=2\left(\frac{3}{s^{2}+9}\right)+4\left(\frac{1}{s-5}\right)=\frac{6}{s^{2}+9}+\frac{4}{s-5}
$$

Finally it's useful sometimes do this in reverse:

## Example 6:

Which function has Laplace transform

$$
\frac{2}{s+1}-\frac{4}{s-3}
$$

Note: This is sometimes written as
"Find the inverse Laplace transform $\mathcal{L}^{-1}\left\{\frac{2}{s+1}-\frac{4}{s-3}\right\}$ "
Recalling the rule $\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$ we get

$$
2 e^{-t}-4 e^{3 t}
$$

Hi, Dr. Elizabeth?
Yeah, uh... I accidentally took the Fourier transform of $m_{y}$ cat...



## 3. Tabular Integration

Video: Tabular Integration

Here's a really cool trick for Laplace transforms of power functions

## Example 7:

$$
\mathcal{L}\left\{t^{3}\right\}
$$

$$
\mathcal{L}\left\{t^{3}\right\}=\int_{0}^{\infty} t^{3} e^{-s t} d t
$$

STEP 1: Put $t^{3}$ on the left hand side and $e^{-s t}$ on the right hand side.
STEP 2: Differentiate $t^{3}$ until you get 0 and integrate $e^{-s t}$
STEP 3: Then cross multiply and alternate signs


What you get is (assuming the terms at $\infty$ are 0 )

$$
\begin{aligned}
& {\left[+t^{3}\left(\frac{e^{-s t}}{-s}\right)-3 t^{2}\left(\frac{e^{-s t}}{(-s)^{2}}\right)+6 t\left(\frac{e^{-s t}}{(-s)^{3}}\right)-6\left(\frac{e^{-s t}}{(-s)^{4}}\right)\right]_{t=0}^{t=\infty} } \\
= & (0-0+0-0)-\left(0^{3}-3(0)^{2}+6(0)-6\left(\frac{e^{-s(0)}}{(-s)^{4}}\right)\right) \\
= & 6\left(\frac{1}{s^{4}}\right)=\frac{6}{s^{4}}
\end{aligned}
$$

Fact:

$$
\mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}
$$

4. Laplace Miracle

## Laplace Miracle:

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}-f(0)
$$

In other words, the Laplace transform turns differentiation (hard) into multiplication (easy)

## Why?

$$
\begin{aligned}
& \mathcal{L}\left\{f^{\prime}(t)\right\}=\int_{0}^{\infty} f^{\prime}(t) e^{-s t} d t \\
& \stackrel{\mathrm{IBP}}{=}\left[f(t) e^{-s t}\right]_{t=0}^{t=\infty}-\int_{0}^{\infty} f(t)\left(-s e^{-s t}\right) d t \\
&=0-f(0) e^{-s(0)}+s \int_{0}^{\infty} f(t) e^{-s t} d t \\
&=-f(0)+s \mathcal{L}\{f(t)\}
\end{aligned}
$$

Analogy: The Laplace transform turns the real world (with $t$ ) into a shadow world (with $s$ ). In this shadow world, differentiation becomes multiplication, which turns differential equations (hard) into algebra equations (easy)


## Consequence:

$$
\begin{aligned}
\mathcal{L}\left\{f^{\prime \prime}(t)\right\} & =\mathcal{L}\left\{\left(f^{\prime}(t)\right)^{\prime}\right\} \\
& =s \mathcal{L}\left\{f^{\prime}(t)\right\}-f^{\prime}(0) \\
& =s(s \mathcal{L}\{f(t)\}-f(0))-f^{\prime}(0) \\
& =s^{2} \mathcal{L}\{f(t)\}-s f(0)-f^{\prime}(0)
\end{aligned}
$$

Consequence:

$$
\mathcal{L}\left\{f^{\prime \prime}(t)\right\}=s^{2} \mathcal{L}\{f(t)\}-s f(0)-f^{\prime}(0)
$$

We'll use this next time to solve ODE

