LECTURE: THE LAPLACE TRANSFORM

1. INTRODUCTION

Welcome to the Queen of Applied Math: the Laplace Transform.

It transforms functions of time t into functions of frequency s

Intuitively: For every s, $\mathcal{L} \{f\}$ gives you a weighted average of f with weight e^{-st} (which becomes smaller and smaller)

Demo: e^{-st} for various values of s

2. EXAMPLES

Video: Laplace Transform Marathon (courtesy blackpenredpen)

Example 1:
$$\mathcal{L} \{1\}$$

$$\mathcal{L}\left\{1\right\} = \int_0^\infty 1e^{-st}dt = \int_0^\infty e^{-st}dt = \left[\frac{e^{-st}}{-s}\right]_{t=0}^{t=\infty}$$
$$= \left(\lim_{t \to \infty} \frac{e^{-st}}{-s}\right) - \frac{e^{-s(0)}}{-s} = 0 - \left(\frac{1}{-s}\right) = \frac{1}{s}$$

 \mathcal{L} transforms 1 into $\frac{1}{s}$

Example 2:		
	$\mathcal{L}\left\{e^{2t} ight\}$	

$$\mathcal{L}\left\{e^{2t}\right\} = \int_{0}^{\infty} e^{2t} e^{-st} dt$$
$$= \int_{0}^{\infty} e^{(2-s)t} dt$$
$$= \left[\frac{e^{(2-s)t}}{2-s}\right]_{t=0}^{t=\infty}$$
$$= \left(\lim_{t \to \infty} \frac{e^{(2-s)t}}{2-s}\right) - \frac{e^{(2-s)(0)}}{2-s}$$
$$= 0 - \frac{1}{2-s} \quad (\text{Assume } s > 2)$$
$$= \frac{1}{s-2}$$

Fact:

$$\mathcal{L}\left\{e^{at}\right\} = \frac{1}{s-a} \qquad s > a$$

Example 3:

$$\mathcal{L}\left\{e^{-3t}\right\} = \frac{1}{s - (-3)} = \frac{1}{s + 3}$$

Example 4:

$$\mathcal{L}\left\{\cos(2t)\right\}$$
 and $\mathcal{L}\left\{\sin(2t)\right\}$

$$\mathcal{L}\left\{\cos(2t)\right\} = \int_0^\infty \cos(2t)e^{-st}dt$$

Either integrate by parts twice (boo!) or:

Cool Peyam Trick: Consider

$$\mathcal{L}\left\{e^{(2t)i}\right\}$$

STEP 1: On the one hand, by definition of $e^{(2t)i}$

$$\mathcal{L}\left\{e^{(2t)i}\right\} = \mathcal{L}\left\{\cos(2t) + i\sin(2t)\right\} = \mathcal{L}\left\{\cos(2t)\right\} + i\mathcal{L}\left\{\sin(2t)\right\}$$

STEP 2: On the other hand, using $\mathcal{L} \{e^{at}\} = \frac{1}{s-a}$ with a = 2i we get

$$\mathcal{L}\left\{e^{2ti}\right\} = \mathcal{L}\left\{e^{(2i)t}\right\} = \frac{1}{s-2i} = \left(\frac{1}{s-2i}\right) \left(\frac{s+2i}{s+2i}\right)$$
$$= \frac{s+2i}{(s-2i)(s+2i)} = \frac{s+2i}{s^2-(2i)^2} = \frac{s+2i}{s^2+4}$$
$$\mathcal{L}\left\{\cos(2t)\right\} + i\mathcal{L}\left\{\sin(2t)\right\} = \frac{s}{s^2+4} + \left(\frac{2}{s^2+4}\right)i$$

STEP 3: Comparing the real and imaginary parts, we get

$$\mathcal{L}\left\{\cos(2t)\right\} = \frac{s}{s^2 + 4}$$
$$\mathcal{L}\left\{\sin(2t)\right\} = \frac{2}{s^2 + 4}$$

Fact:	
	$\mathcal{L}\left\{\cos(at)\right\} = \frac{s}{s^2 + a^2}$ $\mathcal{L}\left\{\sin(at)\right\} = \frac{a}{s^2 + a^2}$

Example 5:

$$\mathcal{L}\left\{2\sin(3t) + 4e^{5t}\right\}$$

The Laplace Transform is linear, so this is just:

$$2\mathcal{L}\left\{\sin(3t)\right\} + 4\mathcal{L}\left\{e^{5t}\right\} = 2\left(\frac{3}{s^2+9}\right) + 4\left(\frac{1}{s-5}\right) = \frac{6}{s^2+9} + \frac{4}{s-5}$$

Finally it's useful sometimes do this in reverse:

Example 6:

Which function has Laplace transform

$$\frac{2}{s+1} - \frac{4}{s-3}$$

Note: This is sometimes written as

"Find the inverse Laplace transform $\mathcal{L}^{-1}\left\{\frac{2}{s+1}-\frac{4}{s-3}\right\}$ "

Recalling the rule $\mathcal{L} \{ e^{at} \} = \frac{1}{s-a}$ we get

$$2e^{-t} - 4e^{3t}$$

Hi, Dr. Eliza Voch uh T	beth? arcidentally took
the Fourier tra	nsform of my cat
BÓ	Meow
	An a
/\	Nº ma

Hi, Nuse Red? Xeah, u.M. I occurrentally took the Fourier transform of my best friend... 'AY

3. TABULAR INTEGRATION

Video: Tabular Integration

Here's a really cool trick for Laplace transforms of power functions

Example 7:
$$\mathcal{L}\left\{t^3\right\}$$

$$\mathcal{L}\left\{t^{3}\right\} = \int_{0}^{\infty} t^{3} e^{-st} dt$$

STEP 1: Put t^3 on the left hand side and e^{-st} on the right hand side.

STEP 2: Differentiate t^3 until you get 0 and integrate e^{-st}

STEP 3: Then cross multiply and alternate signs

What you get is (assuming the terms at ∞ are 0)

$$\left[+t^3 \left(\frac{e^{-st}}{-s} \right) - 3t^2 \left(\frac{e^{-st}}{(-s)^2} \right) + 6t \left(\frac{e^{-st}}{(-s)^3} \right) - 6 \left(\frac{e^{-st}}{(-s)^4} \right) \right]_{t=0}^{t=\infty}$$
$$= (0 - 0 + 0 - 0) - \left(0^3 - 3(0)^2 + 6(0) - 6 \left(\frac{e^{-s(0)}}{(-s)^4} \right) \right)$$
$$= 6 \left(\frac{1}{s^4} \right) = \frac{6}{s^4}$$

Fact:

$$\mathcal{L}\left\{t^n\right\} = \frac{n!}{s^{n+1}}$$

4. LAPLACE MIRACLE

Laplace Miracle: $\mathcal{L} \{ f'(t) \} = s \mathcal{L} \{ f(t) \} - f(0)$

In other words, the Laplace transform turns **differentiation** (hard) into **multiplication** (easy)

Why?

$$\mathcal{L} \{f'(t)\} = \int_0^\infty f'(t)e^{-st}dt$$

$$\stackrel{\text{IBP}}{=} [f(t)e^{-st}]_{t=0}^{t=\infty} - \int_0^\infty f(t) \left(-se^{-st}\right)dt$$

$$= 0 - f(0)e^{-s(0)} + s \int_0^\infty f(t)e^{-st}dt$$

$$= -f(0) + s\mathcal{L} \{f(t)\}$$

Analogy: The Laplace transform turns the real world (with t) into a shadow world (with s). In this shadow world, differentiation becomes multiplication, which turns differential equations (hard) into algebra equations (easy)

f ′

Consequence:

$$\mathcal{L} \{ f''(t) \} = \mathcal{L} \left\{ (f'(t))' \right\}$$

= $s\mathcal{L} \{ f'(t) \} - f'(0)$
= $s (s\mathcal{L} \{ f(t) \} - f(0)) - f'(0)$
= $s^2 \mathcal{L} \{ f(t) \} - sf(0) - f'(0)$

Consequence:

$$\mathcal{L} \{ f''(t) \} = s^2 \mathcal{L} \{ f(t) \} - s f(0) - f'(0)$$

We'll use this next time to solve ODE