LECTURE: SYSTEMS OF ODE (II)

Today: We're finally ready to solve systems of ODE!

1. SOLVING SYSTEMS OF ODE

Video: Systems of ODE

Example 1:

Solve x' = Ax where A = [ g _3]

10 —4

It just boils down to finding the eigenvalues/vectors of A!

STEP 1: Eigenvalues

77—\ -3
- =T
=(7T=XA)(—4—-2A) — (-3)(10)
= — 28 — TA+ 4N+ X2 +30
=22 -3\ +2
=A—=1)A—=2)=0

A=1lor =2
STEP 2: A=1


https://www.youtube.com/watch?v=hmVNMSrie8g
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7-1 -3 |0

Nul (A—11) = 10 _4_1()]
_[6 =30
~[10 =50
(+3)Ry (+5)R. |2 —110]
2 —1)0
L [2 —1]0]
0 0 |0

Hence 22 —y =0so y = 2x

<=[o]=[2) =+

Hence E] is an eigenvector for A = 1

STEP 3: A\ =2

7—-2 =3 |0
Nul(A—QI)—_ 10 _4_20]
5 =310
~ {10 =60
R=2f | 5 -3 0
110 —2(5) —6—2(=3)|0
5 —3]
—

Hence bx — 3y =0

x =3 and y = 5 work, so an eigenvector for A = 2 is E]
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STEP 4: Solution:

2

1
- :

]and)\:2w {3

] hence the solution to x’ = Ax is
1 3
X(t) = 016“ [2} + 0262t [5}
Here C; and (5 are constants.
The point is the eigenvectors go with the corresponding eigenvalues.

2. WHY THIS WORKS

Here is why this works!

STEP 1: Original Problem:

10 —4
At this point we are stuck! As is usual in math, before solving a hard
problem, let’s solve an easier version first:

x' = Ax where A = [7 _3]

STEP 2: Easier System: Let’s solve

" fik) ~in

Yo (t) =2u()

This is much easier because we can solve both equations separately:
Y1 (t) :Clet
yg(t) 2026%

Where C] and C5 are constants.
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Important Observation: @ can be written as

y'(t) = Dy(t) where y(t) = Bﬁﬂmmpzh;gmm%ma

Moral: System with diagonal matrices are easy to solve
STEP 3: Back to x' = Ax
Given the previous step, the idea is to turn A into a diagonal matrix:

Trick: Diagonalize: A = PDP~! where

10 1 3
o=l -]
Here D is the matrix of eigenvalues and P is the matrix of eigenvectors

STEP 4: The rest is just some algebra
x'(t) =Ax(t)
x'(t) =PDP ' x(t)
P (X () =P7TPDP ! x(t)
(P~ 1X)/ (t) =D (P~'x) (t) P! is like a constant
y'(t) =Dy (t) where y = P™'x

So in fact we transformed x'(¢) = Ax(t) into the DIAGONAL system
y'(t) = Dy(t), which is precisely the system in STEP 2:

it (t) . C’let
v = || = |6
STEP 5: Solve for x(t)
y(t) = P 'x(t) = x(t) = Py(t) (Think Peyam ®)
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o 1 3 Clet o 1t 1 o 3 m
x(t) = [2 5] [CgGQt] = (e 5 + Che . TA-DAA!!
~——
P y(t)
Moral: Witness here the power of linear algebra. Diagonalization

effectively decouples the system x'(t) = Ax(¢) by turning it into a di-
agonal system y’(t) = Dy(t) which is much easier to solve.

3. PHASE PORTRAITS

Example 2:

Solve x’ = Ax and draw the phase portrait, where

13
=13
STEP 1: Eigenvalues
1—Xx 3
‘A_A”:‘:s 1—J
=1 =21 =-X)-3)3)
=(1-X)?*-9=

(1-XN?*=9=1-A=3o0orl—\=-3
Which gives A = -2 or A =14

STEP 2: A= -2
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1— (-2 3 0
Nul(4 - (-2)1) = ' 772 L) O]
_'330’_> 3 310]
~ 13 3]0 0 0|0
%'110'
0 0]0

r+y=0=y=—xand so
x|l @ | 1
Y — Tt

STEP 3: A\=14

Nul(A — 47) — 0}

r—y=0= 2=y and so
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STEP 4: Solution:

The eigenvalues are —2 and 4 with corresponding eigenvectors [_11]

and E

] and so the solution is

x(t) = Cye? [_11] Coe H

STEP 5: Phase Portrait

The cool thing is that we can actually draw out a plot of the solutions!



(x(D),y(®))

e First draw the axes with directions [_11} and E] (eigenvectors)

Method:
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: 1 : -
e On the axis draw arrows going to the origin.

—1

This is

because e 2t — (0 so solutions on that axis move towards the

origin.

e On the axis E

] draw arrows going away from the origin. This

is because e — oo, so solutions on that axis move away from

the origin.

e Finally, for the solutions in between, you just follow the arrows.

Example 3:

Draw the phase portrait of x’ = Ax where

7 -3
A= [10 —4]

This is the system from before, and we found

x(t) = Cyet H + Coe? [g}

Here on each axis, you draw arrows away from the origin (since the

eigenvalues are both positive).
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<12>
<35>

2t

Note: Since e?’ is much bigger than e, for large ¢, the solutions will

look like Coe?t [3

5 [3} This explains the bending

] , which are parallel to 5

shape above

4. INITIAL CONDITIONS

Just like usual, we can have initial conditions
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Example 4:
;o (10 —4 L
x = Ax where A = {12 _4] and x(0) = {7]
STEP 1: Eigenvalues
10—-XA —4
‘A_m:‘ 12 —4—)\‘

=(10 — \)(—4 — \) — 12(—4)
= — 40 — 10\ +4X\ + X2 + 48
=)\ —6A+8
—(A—=2)(A—4)=0

Which gives A=2or A =4

STEP 2: A\ =2

[10—2 -4 |0
Nul(A—2[)—_ 19 _4_20]
[8 —4]0
|12 —6/0
(=—4)R; (+—6)Rs [2 —1|0]
2 —1)0
. 2 —1]0]
0 0|0
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STEP 3: A\ =14

12 -8
(+2)R; (+49)Rs [3 =210

3 2|0
3 —21]0
0 0|0

3r — 2y = 0. For example z = 2 and y = 3 satisfy this, and so

o

STEP 4: Solution:

STEP 5: Initial Condition

wo=ce ]+ [ -e [ val] - ]

Hence we need to solve the system

Cy+2C5 =5
2C1 + 3Cy =7
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1 25| mi-2p, [1 2 5
2 3|7 0 3—4|7-10
L[t 25
0 —1|-3
L [1 2]

0 1|3
ri-2k [1 05— 2(3)
01 3
L [rof-1
0 1] 3

Hence C; = —1 and Cy = 3 and so

The solution starts out at {8] (at t = —o0) goes down and then

up, passes through the initial condition [5] at t = 0 and eventually

7

becomes parallel to [2} see (optional) picture below.

3
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