LECTURE: SYSTEMS OF ODE (II)

Today: We're finally ready to solve systems of ODE!

1. Solving Systems of ODE

Video: Systems of ODE

Example 1:

$$
\text { Solve } \mathbf{x}^{\prime}=A \mathbf{x} \text { where } A=\left[\begin{array}{cc}
7 & -3 \\
10 & -4
\end{array}\right]
$$

It just boils down to finding the eigenvalues/vectors of A !

STEP 1: Eigenvalues

$$
\begin{aligned}
|A-\lambda I|= & \left|\begin{array}{cc}
7-\lambda & -3 \\
10 & -4-\lambda
\end{array}\right| \\
= & (7-\lambda)(-4-\lambda)-(-3)(10) \\
= & -28-7 \lambda+4 \lambda+\lambda^{2}+30 \\
= & \lambda^{2}-3 \lambda+2 \\
= & (\lambda-1)(\lambda-2)=0 \\
& \lambda=1 \text { or } \lambda=2
\end{aligned}
$$

STEP 2: $\lambda=1$

$$
\begin{aligned}
& \operatorname{Nul}(A-1 I)=\left[\begin{array}{cc|c}
7-1 & -3 & 0 \\
10 & -4-1 & 0
\end{array}\right] \\
&=\left[\begin{array}{cc|c}
6 & -3 & 0 \\
10 & -5 & 0
\end{array}\right] \\
&(\div 3) \xrightarrow{R_{1}(\div 5)} R_{2}\left[\begin{array}{cc|c}
2 & -1 & 0 \\
2 & -1 & 0
\end{array}\right] \\
& \longrightarrow\left[\begin{array}{cc|c}
2 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Hence $2 x-y=0$ so $y=2 x$

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
2 x
\end{array}\right]=x\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Hence $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector for $\lambda=1$
STEP 3: $\lambda=2$

$$
\begin{aligned}
& \operatorname{Nul}(A-2 I)=\left[\begin{array}{cc|c}
7-2 & -3 & 0 \\
10 & -4-2 & 0
\end{array}\right] \\
&=\left[\begin{array}{cc|c}
5 & -3 & 0 \\
10 & -6 & 0
\end{array}\right] \\
& \stackrel{R_{2}-2 R_{1}}{ }\left[\begin{array}{ccc|c}
5 & -3 & 0 \\
10-2(5) & -6-2(-3) & 0
\end{array}\right] \\
& \longrightarrow\left[\begin{array}{cc|c}
5 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Hence $5 x-3 y=0$
$x=3$ and $y=5$ work, so an eigenvector for $\lambda=2$ is $\left[\begin{array}{l}3 \\ 5\end{array}\right]$

STEP 4: Solution:

$\lambda=1 \rightsquigarrow\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\lambda=2 \rightsquigarrow\left[\begin{array}{l}3 \\ 5\end{array}\right]$ hence the solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is

$$
\mathbf{x}(t)=C_{1} e^{1 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2} e^{2 t}\left[\begin{array}{l}
3 \\
5
\end{array}\right]
$$

Here C_{1} and C_{2} are constants.
The point is the eigenvectors go with the corresponding eigenvalues.

2. Why this works

Here is why this works!

STEP 1: Original Problem:

$$
\mathbf{x}^{\prime}=A \mathbf{x} \text { where } A=\left[\begin{array}{cc}
7 & -3 \\
10 & -4
\end{array}\right]
$$

At this point we are stuck! As is usual in math, before solving a hard problem, let's solve an easier version first:

STEP 2: Easier System: Let's solve

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=1 y_{1}(t) \\
y_{2}^{\prime}(t)=2 y_{2}(t)
\end{array}\right.
$$

This is much easier because we can solve both equations separately:

$$
\left\{\begin{array}{l}
y_{1}(t)=C_{1} e^{t} \\
y_{2}(t)=C_{2} e^{2 t}
\end{array}\right.
$$

Where C_{1} and C_{2} are constants.

Important Observation: (ब) can be written as

$$
\mathbf{y}^{\prime}(t)=D \mathbf{y}(t) \text { where } \mathbf{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right] \text { and } D=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \text { is diagonal }
$$

Moral: System with diagonal matrices are easy to solve
STEP 3: Back to $\mathrm{x}^{\prime}=A \mathrm{x}$
Given the previous step, the idea is to turn A into a diagonal matrix:
Trick: Diagonalize: $A=P D P^{-1}$ where

$$
D=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \quad P=\left[\begin{array}{ll}
1 & 3 \\
2 & 5
\end{array}\right]
$$

Here D is the matrix of eigenvalues and P is the matrix of eigenvectors
STEP 4: The rest is just some algebra

$$
\begin{array}{rlr}
\mathbf{x}^{\prime}(t) & =A \mathbf{x}(t) & \\
\mathbf{x}^{\prime}(t) & =P D P^{-1} \mathbf{x}(t) & \\
P^{-1}\left(\mathbf{x}^{\prime}(t)\right) & =P^{-1} \not P D P^{-1} \mathbf{x}(t) \\
\left(P^{-1} \mathbf{x}\right)^{\prime}(t) & =D\left(P^{-1} \mathbf{x}\right)(t) & \\
\mathbf{y}^{\prime}(t) & =D \mathbf{y}(t) & P^{-1} \text { is like a constant } \\
& \text { where } \mathbf{y}=P^{-1} \mathbf{x}
\end{array}
$$

So in fact we transformed $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ into the DIAGONAL system $\mathbf{y}^{\prime}(t)=D \mathbf{y}(t)$, which is precisely the system in STEP 2:

$$
\mathbf{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
C_{1} e^{t} \\
C_{2} e^{2 t}
\end{array}\right]
$$

STEP 5: Solve for $\mathbf{x}(t)$

$$
\left.\mathbf{y}(t)=P^{-1} \mathbf{x}(t) \Rightarrow \mathbf{x}(t)=P \mathbf{y}(t) \quad \text { (Think Peyam } \odot\right)
$$

$$
\mathbf{x}(t)=\underbrace{\left[\begin{array}{ll}
1 & 3 \\
2 & 5
\end{array}\right]}_{P} \underbrace{\left[\begin{array}{c}
C_{1} e^{t} \\
C_{2} e^{2 t}
\end{array}\right]}_{\mathbf{y}(t)}=C_{1} e^{1 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2} e^{2 t}\left[\begin{array}{l}
3 \\
5
\end{array}\right] \text { TA-DAA }!!!
$$

Moral: Witness here the power of linear algebra. Diagonalization effectively decouples the system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ by turning it into a diagonal system $\mathbf{y}^{\prime}(t)=D \mathbf{y}(t)$ which is much easier to solve.

3. Phase Portraits

Example 2:

Solve $\mathbf{x}^{\prime}=A \mathbf{x}$ and draw the phase portrait, where

$$
A=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]
$$

STEP 1: Eigenvalues

$$
\begin{aligned}
|A-\lambda I| & =\left|\begin{array}{cc}
1-\lambda & 3 \\
3 & 1-\lambda
\end{array}\right| \\
& =(1-\lambda)(1-\lambda)-(3)(3) \\
& =(1-\lambda)^{2}-9=0 \\
(1-\lambda)^{2}=9 & \Rightarrow 1-\lambda=3 \text { or } 1-\lambda=-3
\end{aligned}
$$

Which gives $\lambda=-2$ or $\lambda=4$
STEP 2: $\lambda=-2$

$$
\begin{aligned}
\operatorname{Nul}(A-(-2) I) & =\left[\begin{array}{ccc|c}
1-(-2) & 3 & 0 \\
& 3 & 1-(-2) & 0
\end{array}\right] \\
& =\left[\begin{array}{ll|l}
3 & 3 & 0 \\
3 & 3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
3 & 3 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$x+y=0 \Rightarrow y=-x$ and so

$$
\begin{gathered}
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
-x
\end{array}\right]=x\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
\lambda=-2 \rightsquigarrow\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{gathered}
$$

STEP 3: $\lambda=4$

$$
\begin{aligned}
& \operatorname{Nul}(A-4 I)=\left[\begin{array}{cc|c}
1-4 & 3 & 0 \\
3 & 1-4 & 0
\end{array}\right] \\
&=\left[\begin{array}{ccc}
-3 & 3 & 0 \\
3 & -3 & 0
\end{array}\right] \\
& \stackrel{R_{2}+R_{1}}{\longrightarrow}\left[\begin{array}{cc|c}
-3 & 3 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \xrightarrow{\div-3) R_{1}}\left[\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$x-y=0 \Rightarrow x=y$ and so

$$
\begin{gathered}
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
y \\
y
\end{array}\right]=y\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
\lambda=4 \rightsquigarrow\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{gathered}
$$

STEP 4: Solution:

The eigenvalues are -2 and 4 with corresponding eigenvectors $\left[\begin{array}{c}1 \\ -1\end{array}\right]$
and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and so the solution is

$$
\mathbf{x}(t)=C_{1} e^{-2 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+C_{2} e^{4 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

STEP 5: Phase Portrait

The cool thing is that we can actually draw out a plot of the solutions!

Method:

- First draw the axes with directions $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ (eigenvectors)
- On the axis $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ draw arrows going to the origin. This is because $e^{-2 t} \rightarrow 0$ so solutions on that axis move towards the origin.
- On the axis $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ draw arrows going away from the origin. This is because $e^{4 t} \rightarrow \infty$, so solutions on that axis move away from the origin.
- Finally, for the solutions in between, you just follow the arrows.

Example 3:

Draw the phase portrait of $\mathbf{x}^{\prime}=A \mathbf{x}$ where

$$
A=\left[\begin{array}{cc}
7 & -3 \\
10 & -4
\end{array}\right]
$$

This is the system from before, and we found

$$
\mathbf{x}(t)=C_{1} e^{1 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2} e^{2 t}\left[\begin{array}{l}
3 \\
5
\end{array}\right]
$$

Here on each axis, you draw arrows away from the origin (since the eigenvalues are both positive).

Note: Since $e^{2 t}$ is much bigger than e^{t}, for large t, the solutions will look like $C_{2} e^{2 t}\left[\begin{array}{l}3 \\ 5\end{array}\right]$, which are parallel to $\left[\begin{array}{l}3 \\ 5\end{array}\right]$ This explains the bending shape above

4. Initial Conditions

Just like usual, we can have initial conditions

Example 4:

$$
\mathbf{x}^{\prime}=A \mathbf{x} \text { where } A=\left[\begin{array}{ll}
10 & -4 \\
12 & -4
\end{array}\right] \text { and } \mathbf{x}(0)=\left[\begin{array}{l}
5 \\
7
\end{array}\right]
$$

STEP 1: Eigenvalues

$$
\begin{aligned}
|A-\lambda I| & =\left|\begin{array}{cc}
10-\lambda & -4 \\
12 & -4-\lambda
\end{array}\right| \\
& =(10-\lambda)(-4-\lambda)-12(-4) \\
& =-40-10 \lambda+4 \lambda+\lambda^{2}+48 \\
& =\lambda^{2}-6 \lambda+8 \\
& =(\lambda-2)(\lambda-4)=0
\end{aligned}
$$

Which gives $\lambda=2$ or $\lambda=4$
STEP 2: $\lambda=2$

$$
\begin{aligned}
& \operatorname{Nul}(A-2 I)=\left[\begin{array}{ccc|c}
10-2 & -4 & 0 \\
12 & -4-2 & 0
\end{array}\right] \\
&=\left[\begin{array}{cc|c}
8 & -4 & 0 \\
12 & -6 & 0
\end{array}\right] \\
&(\div-4) \xrightarrow{R_{1}(\div-6) R_{2}}\left[\begin{array}{cc|c}
2 & -1 & 0 \\
2 & -1 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cc|c}
2 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$2 x-y=0 \Rightarrow y=2 x$

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
2 x
\end{array}\right]=x\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

$$
\lambda=2 \rightsquigarrow\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

STEP 3: $\lambda=4$

$$
\begin{aligned}
& \operatorname{Nul}(A-4 I)=\left[\begin{array}{cc|c}
10-4 & -4 & 0 \\
12 & -4-4 & 0
\end{array}\right] \\
&=\left[\begin{array}{cc|c}
6 & -4 & 0 \\
12 & -8 & 0
\end{array}\right] \\
&(\div 2) \xrightarrow{R_{1}(\dot{\succ}) R_{2}}\left[\begin{array}{ll|l}
3 & -2 & 0 \\
3 & -2 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cc|c}
3 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$3 x-2 y=0$. For example $x=2$ and $y=3$ satisfy this, and so

$$
\lambda=4 \rightsquigarrow\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

STEP 4: Solution:

$$
\mathbf{x}(t)=C_{1} e^{2 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2} e^{4 t}\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

STEP 5: Initial Condition

$$
\mathbf{x}(0)=C_{1} e^{0}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2} e^{0}\left[\begin{array}{l}
2 \\
3
\end{array}\right]=C_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2}\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
5 \\
7
\end{array}\right]
$$

Hence we need to solve the system

$$
\left\{\begin{array}{r}
C_{1}+2 C_{2}=5 \\
2 C_{1}+3 C_{2}=7
\end{array}\right.
$$

$$
\begin{aligned}
{\left[\begin{array}{ll|l}
1 & 2 & 5 \\
2 & 3 & 7
\end{array}\right] } & \xrightarrow{R_{1}-2 R_{2}}\left[\begin{array}{cc|c}
1 & 2 & 5 \\
0 & 3-4 & 7-10
\end{array}\right] \\
& \longrightarrow\left[\begin{array}{cc|c}
1 & 2 & 5 \\
0 & -1 & -3
\end{array}\right] \\
& \longrightarrow\left[\begin{array}{ll|l}
1 & 2 & 5 \\
0 & 1 & 3
\end{array}\right] \\
& \xrightarrow{R_{1}-2 R_{2}}\left[\begin{array}{ll|l}
1 & 0 & 5-2(3) \\
0 & 1 & 3
\end{array}\right] \\
& {\left[\begin{array}{ll|l}
1 & 0 & -1 \\
0 & 1 & 3
\end{array}\right] }
\end{aligned}
$$

Hence $C_{1}=-1$ and $C_{2}=3$ and so

$$
\mathbf{x}(t)=-e^{2 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+3 e^{4 t}\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

The solution starts out at $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ (at $\left.t=-\infty\right)$ goes down and then up, passes through the initial condition $\left[\begin{array}{l}5 \\ 7\end{array}\right]$ at $t=0$ and eventually becomes parallel to $\left[\begin{array}{l}2 \\ 3\end{array}\right]$ see (optional) picture below.

