LECTURE: SYSTEMS OF ODE (II)

Today: We're finally ready to solve systems of ODE!

1. Solving Systems of ODE

Video: Systems of ODE

Example 1:

Solve
$$\mathbf{x}' = A\mathbf{x}$$
 where $A = \begin{bmatrix} 7 & -3\\ 10 & -4 \end{bmatrix}$

It just boils down to finding the eigenvalues/vectors of A!

STEP 1: Eigenvalues

$$|A - \lambda I| = \begin{vmatrix} 7 - \lambda & -3 \\ 10 & -4 - \lambda \end{vmatrix}$$
$$= (7 - \lambda)(-4 - \lambda) - (-3)(10)$$
$$= -28 - 7\lambda + 4\lambda + \lambda^2 + 30$$
$$= \lambda^2 - 3\lambda + 2$$
$$= (\lambda - 1)(\lambda - 2) = 0$$
$$\lambda = 1 \text{ or } \lambda = 2$$

STEP 2: $\lambda = 1$

Nul
$$(A - 1I) = \begin{bmatrix} 7 - 1 & -3 & | & 0 \\ 10 & -4 - 1 & | & 0 \end{bmatrix}$$

 $= \begin{bmatrix} 6 & -3 & | & 0 \\ 10 & -5 & | & 0 \end{bmatrix}$
 $\stackrel{(\div 3)R_1 (\div 5)R_2}{\longrightarrow} \begin{bmatrix} 2 & -1 & | & 0 \\ 2 & -1 & | & 0 \end{bmatrix}$
 $\longrightarrow \begin{bmatrix} 2 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$

Hence 2x - y = 0 so y = 2x

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 2x \end{bmatrix} = x \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Hence $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector for $\lambda = 1$ STEP 3: $\lambda = 2$

Nul
$$(A - 2I) = \begin{bmatrix} 7 - 2 & -3 & | & 0 \\ 10 & -4 - 2 & | & 0 \end{bmatrix}$$

 $= \begin{bmatrix} 5 & -3 & | & 0 \\ 10 & -6 & | & 0 \end{bmatrix}$
 $\stackrel{R_2 - 2R_1}{\longrightarrow} \begin{bmatrix} 5 & -3 & | & 0 \\ 10 - 2(5) & -6 - 2(-3) & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$
 $\longrightarrow \begin{bmatrix} 5 & -3 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$

Hence 5x - 3y = 0

x = 3 and y = 5 work, so an eigenvector for $\lambda = 2$ is $\begin{bmatrix} 3 \\ 5 \end{bmatrix}$

STEP 4: Solution:

$$\lambda = 1 \rightsquigarrow \begin{bmatrix} 1\\2 \end{bmatrix}$$
 and $\lambda = 2 \rightsquigarrow \begin{bmatrix} 3\\5 \end{bmatrix}$ hence the solution to $\mathbf{x}' = A\mathbf{x}$ is
 $\mathbf{x}(t) = C_1 e^{1t} \begin{bmatrix} 1\\2 \end{bmatrix} + C_2 e^{2t} \begin{bmatrix} 3\\5 \end{bmatrix}$

Here C_1 and C_2 are constants.

The point is the eigenvectors go with the corresponding eigenvalues.

2. Why this works

Here is why this works!

STEP 1: Original Problem:

$$\mathbf{x}' = A\mathbf{x}$$
 where $A = \begin{bmatrix} 7 & -3 \\ 10 & -4 \end{bmatrix}$

At this point we are stuck! As is usual in math, before solving a hard problem, let's solve an easier version first:

STEP 2: Easier System: Let's solve

(*)
$$\begin{cases} y_1'(t) = 1y_1(t) \\ y_2'(t) = 2y_2(t) \end{cases}$$

This is **much** easier because we can solve both equations separately:

$$\begin{cases} y_1(t) = C_1 e^t \\ y_2(t) = C_2 e^{2t} \end{cases}$$

Where C_1 and C_2 are constants.

Important Observation: (\star) can be written as

$$\mathbf{y}'(t) = D\mathbf{y}(t)$$
 where $\mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ is diagonal

Moral: System with *diagonal* matrices are *easy* to solve

STEP 3: Back to $\mathbf{x}' = A\mathbf{x}$

Given the previous step, the idea is to turn A into a diagonal matrix:

Trick: Diagonalize: $A = PDP^{-1}$ where

$$D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \qquad P = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$$

Here D is the matrix of eigenvalues and P is the matrix of eigenvectors

STEP 4: The rest is just some algebra

$$\mathbf{x}'(t) = A \mathbf{x}(t)$$
$$\mathbf{x}'(t) = PDP^{-1} \mathbf{x}(t)$$
$$P^{-1} (\mathbf{x}'(t)) = P \mathcal{P} \mathcal{P} DP^{-1} \mathbf{x}(t)$$
$$(P^{-1}\mathbf{x})'(t) = D (P^{-1}\mathbf{x}) (t) \qquad P^{-1} \text{ is like a constant}$$
$$\mathbf{y}'(t) = D\mathbf{y}(t) \qquad \text{where } \mathbf{y} = P^{-1}\mathbf{x}$$

So in fact we transformed $\mathbf{x}'(t) = A\mathbf{x}(t)$ into the **DIAGONAL** system $\mathbf{y}'(t) = D\mathbf{y}(t)$, which is precisely the system in **STEP 2**:

$$\mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} C_1 e^t \\ C_2 e^{2t} \end{bmatrix}$$

STEP 5: Solve for $\mathbf{x}(t)$

$$\mathbf{y}(t) = P^{-1}\mathbf{x}(t) \Rightarrow \mathbf{x}(t) = P\mathbf{y}(t)$$
 (Think Peyam \textcircled{o})

$$\mathbf{x}(t) = \underbrace{\begin{bmatrix} 1 & 3\\ 2 & 5 \end{bmatrix}}_{P} \underbrace{\begin{bmatrix} C_1 e^t\\ C_2 e^{2t} \end{bmatrix}}_{\mathbf{y}(t)} = C_1 e^{1t} \begin{bmatrix} 1\\ 2 \end{bmatrix} + C_2 e^{2t} \begin{bmatrix} 3\\ 5 \end{bmatrix} \quad \textbf{TA-DAA!!!}$$

Moral: Witness here the power of linear algebra. Diagonalization effectively decouples the system $\mathbf{x}'(t) = A\mathbf{x}(t)$ by turning it into a diagonal system $\mathbf{y}'(t) = D\mathbf{y}(t)$ which is much easier to solve.

3. Phase Portraits

Example 2: Solve $\mathbf{x}' = A\mathbf{x}$ and draw the phase portrait, where $A = \begin{bmatrix} 1 & 3\\ 3 & 1 \end{bmatrix}$

STEP 1: Eigenvalues

$$A - \lambda I = \begin{vmatrix} 1 - \lambda & 3 \\ 3 & 1 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)(1 - \lambda) - (3)(3)$$
$$= (1 - \lambda)^2 - 9 = 0$$

$$(1 - \lambda)^2 = 9 \Rightarrow 1 - \lambda = 3 \text{ or } 1 - \lambda = -3$$

Which gives $\lambda = -2$ or $\lambda = 4$

STEP 2: $\lambda = -2$

$$\operatorname{Nul}(A - (-2)I) = \begin{bmatrix} 1 - (-2) & 3 & | & 0 \\ 3 & 1 - (-2) & | & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 3 & | & 0 \\ 3 & 3 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 3 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

 $x + y = 0 \Rightarrow y = -x$ and so

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ -x \end{bmatrix} = x \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$\lambda = -2 \rightsquigarrow \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

STEP 3: $\lambda = 4$

$$\operatorname{Nul}(A - 4I) = \begin{bmatrix} 1 - 4 & 3 & | & 0 \\ 3 & 1 - 4 & | & 0 \end{bmatrix}$$
$$= \begin{bmatrix} -3 & 3 & 0 \\ 3 & -3 & 0 \end{bmatrix}$$
$$\stackrel{R_2 + R_1}{\longrightarrow} \begin{bmatrix} -3 & 3 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$
$$\stackrel{(\div -3)R_1}{\longrightarrow} \begin{bmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

 $x - y = 0 \Rightarrow x = y$ and so

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ y \end{bmatrix} = y \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$\lambda = 4 \rightsquigarrow \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

STEP 4: Solution:

The eigenvalues are -2 and 4 with corresponding eigenvectors $\begin{bmatrix} 1\\ -1 \end{bmatrix}$ and $\begin{bmatrix} 1\\ 1 \end{bmatrix}$ and so the solution is

$$\mathbf{x}(t) = C_1 e^{-2t} \begin{bmatrix} 1\\ -1 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

STEP 5: Phase Portrait

The cool thing is that we can actually draw out a plot of the solutions!

Method:

• First draw the axes with directions $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (eigenvectors)

- On the axis $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ draw arrows going to the origin. This is because $e^{-2t} \to 0$ so solutions on that axis move towards the origin.
- On the axis $\begin{bmatrix} 1\\1 \end{bmatrix}$ draw arrows going away from the origin. This is because $e^{4t} \to \infty$, so solutions on that axis move away from the origin.
- Finally, for the solutions in between, you just follow the arrows.

Example 3:

Draw the phase portrait of $\mathbf{x}' = A\mathbf{x}$ where

$$A = \begin{bmatrix} 7 & -3\\ 10 & -4 \end{bmatrix}$$

This is the system from before, and we found

$$\mathbf{x}(t) = C_1 e^{1t} \begin{bmatrix} 1\\2 \end{bmatrix} + C_2 e^{2t} \begin{bmatrix} 3\\5 \end{bmatrix}$$

Here on each axis, you draw arrows away from the origin (since the eigenvalues are both positive).

Note: Since e^{2t} is much bigger than e^t , for large t, the solutions will look like $C_2 e^{2t} \begin{bmatrix} 3 \\ 5 \end{bmatrix}$, which are parallel to $\begin{bmatrix} 3 \\ 5 \end{bmatrix}$ This explains the bending shape above

4. INITIAL CONDITIONS

Just like usual, we can have initial conditions

Example 4:

$$\mathbf{x}' = A\mathbf{x}$$
 where $A = \begin{bmatrix} 10 & -4 \\ 12 & -4 \end{bmatrix}$ and $\mathbf{x}(0) = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$

STEP 1: Eigenvalues

$$|A - \lambda I| = \begin{vmatrix} 10 - \lambda & -4 \\ 12 & -4 - \lambda \end{vmatrix}$$

= $(10 - \lambda)(-4 - \lambda) - 12(-4)$
= $-40 - 10\lambda + 4\lambda + \lambda^2 + 48$
= $\lambda^2 - 6\lambda + 8$
= $(\lambda - 2)(\lambda - 4) = 0$

Which gives $\lambda = 2$ or $\lambda = 4$

STEP 2: $\lambda = 2$

$$\operatorname{Nul}(A - 2I) = \begin{bmatrix} 10 - 2 & -4 & | & 0 \\ 12 & -4 - 2 & | & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 8 & -4 & | & 0 \\ 12 & -6 & | & 0 \end{bmatrix}$$
$$\stackrel{(\div -4)R_1 \ (\div -6)R_2}{\longrightarrow} \begin{bmatrix} 2 & -1 & | & 0 \\ 2 & -1 & | & 0 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 2 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

 $2x - y = 0 \Rightarrow y = 2x$

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 2x \end{bmatrix} = x \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\lambda = 2 \rightsquigarrow \begin{bmatrix} 1\\2 \end{bmatrix}$$

STEP 3: $\lambda = 4$

$$\operatorname{Nul}(A - 4I) = \begin{bmatrix} 10 - 4 & -4 & | & 0 \\ 12 & -4 - 4 & | & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 6 & -4 & | & 0 \\ 12 & -8 & | & 0 \end{bmatrix}$$
$$\stackrel{(\div 2)R_1 \ (\div 4)R_2}{\longrightarrow} \begin{bmatrix} 3 & -2 & | & 0 \\ 3 & -2 & | & 0 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 3 & -2 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

3x - 2y = 0. For example x = 2 and y = 3 satisfy this, and so

$$\lambda = 4 \rightsquigarrow \begin{bmatrix} 2\\ 3 \end{bmatrix}$$

STEP 4: Solution:

$$\mathbf{x}(t) = C_1 e^{2t} \begin{bmatrix} 1\\2 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} 2\\3 \end{bmatrix}$$

STEP 5: Initial Condition

$$\mathbf{x}(0) = C_1 e^0 \begin{bmatrix} 1\\2 \end{bmatrix} + C_2 e^0 \begin{bmatrix} 2\\3 \end{bmatrix} = C_1 \begin{bmatrix} 1\\2 \end{bmatrix} + C_2 \begin{bmatrix} 2\\3 \end{bmatrix} = \begin{bmatrix} 5\\7 \end{bmatrix}$$

Hence we need to solve the system

$$\begin{cases} C_1 + 2C_2 = 5\\ 2C_1 + 3C_2 = 7 \end{cases}$$

$$\begin{bmatrix} 1 & 2 & | & 5 \\ 2 & 3 & | & 7 \end{bmatrix} \xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 2 & | & 5 \\ 0 & 3 - 4 & | & 7 - 10 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & | & 5 \\ 0 & -1 & | & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & | & 5 \\ 0 & -1 & | & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & | & 5 \\ 0 & -1 & | & -3 \end{bmatrix}$$
$$\xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 & | & 5 - 2(3) \\ 0 & 1 & | & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & | & -1 \\ 0 & 1 & | & 3 \end{bmatrix}$$

Hence $C_1 = -1$ and $C_2 = 3$ and so

$$\mathbf{x}(t) = -e^{2t} \begin{bmatrix} 1\\2 \end{bmatrix} + 3e^{4t} \begin{bmatrix} 2\\3 \end{bmatrix}$$

The solution starts out at $\begin{bmatrix} 0\\0 \end{bmatrix}$ (at $t = -\infty$) goes down and then up, passes through the initial condition $\begin{bmatrix} 5\\7 \end{bmatrix}$ at t = 0 and eventually becomes parallel to $\begin{bmatrix} 2\\3 \end{bmatrix}$ see (optional) picture below.

