LECTURE: SEPARABLE EQUATIONS

1. Separation of Variables

Example 1:

Find the solution of $\frac{d y}{d t}=\frac{4 t-t^{3}}{4+y^{3}}$ that goes through $(0,1)$

$$
\begin{aligned}
\left(4+y^{3}\right) d y & =\left(4 t-t^{3}\right) d t \\
\int 4+y^{3} d y & =\int 4 t-t^{3} d t \\
4 y+\frac{y^{4}}{4} & =2 t^{2}-\frac{t^{4}}{4}+C \\
16 y+y^{4} & =8 t^{2}-t^{4}+4 C \\
y^{4}+16 y & =-t^{4}+8 t^{2}+C
\end{aligned}
$$

Unfortunately here we cannot solve for y in terms of t, and so we leave the solution in implicit form as an integral curve.

To find C, plug in $t=0$ and $y=1$ to get $1+16=0+0+C \Rightarrow C=17$

So the solution is the curve $y^{4}+16 y=-t^{4}+8 t^{2}+17$

Example 2: (extra practice)

$$
\left\{\begin{aligned}
t d t-y e^{-t} d y & =0 \\
y(0) & =3
\end{aligned}\right.
$$

$$
\begin{aligned}
& y e^{-t} d y= t d t \\
& y d y= t e^{t} d t \\
& \int y d y=\int t e^{t} d t \\
& \frac{y^{2}}{2}= t e^{t}-\int e^{t} d t=t e^{t}-e^{t}+C \quad \text { (Integration by parts) } \\
& y^{2}= 2 t e^{t}-2 e^{t}+\underbrace{2 C}_{C} \\
& y^{2}=2 t e^{t}-2 e^{t}+C \Rightarrow y= \pm \sqrt{2 t e^{t}-2 e^{t}+C}
\end{aligned}
$$

But if $y=-\sqrt{2 t e^{t}-2 e^{t}+C} \leq 0$, then we cannot have $y(0)=3$ and so $y=\sqrt{2 t e^{t}-2 e^{t}+C}$.

Finally using $y(0)=3$ we get

$$
3=\sqrt{2(0)-2+C} \Rightarrow 3=\sqrt{-2+C} \Rightarrow-2+C=9 \Rightarrow C=11
$$

Hence $y=\sqrt{2 t e^{t}-2 e^{t}+11}$
Note: For even more practice, check out the following video:

Video: Separation of Variables

2. Why this works

When solving $\frac{d y}{d t}=\frac{f(t)}{g(y)}$ using separation of variables you get

$$
g(y) d y=f(t) d t \Rightarrow G(y)=F(t)+C
$$

where F and G are anti-derivatives of f and g

Differentiating this using the chain rule, we get

$$
(G(y))^{\prime}=(F(t)+C)^{\prime} \Rightarrow G^{\prime}(y) \frac{d y}{d t}=f(t) \Rightarrow g(y) \frac{d y}{d t}=f(t) \Rightarrow \frac{d y}{d t}=\frac{f(t)}{g(y)} \checkmark
$$

So indeed the y we found is a solution of our ODE.

3. Logistic equation

Video: Logistic Equation

Recall: Logistic equation, which models population of bacteria

$$
y^{\prime}=3 y\left(1-\frac{y}{20}\right)
$$

We were able to describe it qualitatively, and got a picture as follows

We now have all the tools we need to solve it
Example 3:

$$
\left\{\begin{aligned}
\frac{d y}{d t} & =3 y\left(1-\frac{y}{20}\right) \\
y(0) & =10
\end{aligned}\right.
$$

STEP 1:

$$
\begin{aligned}
d y & =(3 y)\left(1-\frac{y}{20}\right) d t \\
\frac{d y}{y\left(1-\frac{y}{20}\right)} & =3 d t \\
\int \frac{d y}{y\left(\frac{20-y}{20}\right)} & =\int 3 d t \\
\int \frac{20}{y(20-y)} d y & =3 t+C
\end{aligned}
$$

STEP 2: To evaluate the left hand side, use partial fractions:

Fact:
 $$
\frac{20}{y(20-y)}=\frac{1}{y}+\frac{1}{20-y}
$$

Why?

$$
\frac{20}{y(20-y)}=\frac{A}{y}+\frac{B}{20-y}=\frac{20 A-A y+B y}{y(20-y)}=\frac{20 A+(B-A) y}{y(20-y)}
$$

$$
\begin{gathered}
\left\{\begin{array} { r l }
{ 2 0 A } & { = 2 0 } \\
{ (B - A) } & { = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
A=1 \\
B=1
\end{array}\right.\right. \\
\frac{20}{y(20-y)}=\frac{1}{y}+\frac{1}{20-y}
\end{gathered}
$$

STEP 3: Go back to:

$$
\begin{aligned}
\int \frac{20}{y(20-y)} d y & =3 t+C \\
\int \frac{1}{y}+\frac{1}{20-y} d y & =3 t+C \\
\ln |y|-\ln |20-y| & =3 t+C \\
\ln \left|\frac{y}{20-y}\right| & =3 t+C \\
\left|\frac{y}{20-y}\right| & =e^{3 t+C} \\
\frac{y}{20-y} & =\underbrace{ \pm C}_{C} e^{3 t}=C e^{3 t}
\end{aligned}
$$

STEP 4: Cross-multiply

$$
\begin{aligned}
y & =C e^{3 t}(20-y) \\
y & =20 C e^{3 t}-C y e^{3 t} \\
y+C y e^{3 t} & =20 C e^{3 t} \\
y\left(1+C e^{3 t}\right) & =20 C e^{3 t} \\
y & =\frac{20 C e^{3 t}}{1+C e^{3 t}}
\end{aligned}
$$

DON'T relabel numerator as C because there is also C on the denom
STEP 5: Finally, to find C, use $y(0)=10$

$$
\begin{aligned}
y(0) & =10 \\
\frac{20 C}{1+C} & =10 \\
20 C & =10(1+C) \\
20 C & =10+10 C \\
10 C & =10 \\
C & =1
\end{aligned}
$$

STEP 6: Therefore we finally get the solution (the simplification is optional)

$$
y=\frac{20 e^{3 t}}{1+e^{3 t}}=\frac{20 e^{3 t}}{1+e^{3 t}}\left(\frac{e^{-3 t}}{e^{-3 t}}\right)=\frac{20}{1+e^{-3 t}}
$$

Notice in particular that the behavior is as expected, we start with 10 and then increase until we reach the limit which is $\frac{20}{1+0}=20$

4. Hidden Solutions

Example 4: (Cautionary Tale)

$$
\frac{d y}{d t}=t\left(y^{2}\right)
$$

$$
\begin{aligned}
d y & =t y^{2} d t \\
\frac{d y}{y^{2}} & =t d t \quad\left(\text { Here we divided by } y^{2}\right) \\
\int \frac{d y}{y^{2}} & =\int t d t \\
-\frac{1}{y} & =\frac{t^{2}}{2}+C \\
y & =\frac{1}{-\left(\frac{t^{2}}{2}+C\right)} \\
y & =\frac{2}{-t^{2}-2 C} \\
y & =\frac{2}{-t^{2}+C}
\end{aligned}
$$

Careful: We missed a solution here! We divided by y^{2}, which leaves out the possibility of $y=0$ (dividing by 0) and in fact $y=0$ is a perfectly valid solution to this equation!

So in fact we should say that the solutions are

$$
y=\frac{2}{-t^{2}+C} \quad \text { or } y=0
$$

The moral of the story is: Always beware of hidden solutions, especially when you divide by y

5. Integrating Factors: Motivation

Here is another cool method for solving first-order ODE, based on the product rule

Example 5: (Motivation)

$$
e^{3 t}\left(y^{\prime}\right)+\left(3 e^{3 t}\right) y=t^{2}
$$

Notice the left hand side is precisely the derivative of $e^{3 t} y$, that is:

$$
\begin{aligned}
\left(e^{3 t} y\right)^{\prime} & =t^{2} \\
e^{3 t} y & =\frac{1}{3} t^{3}+C \\
y & =\frac{1}{3} t^{3} e^{-3 t}+C e^{-3 t}
\end{aligned}
$$

The idea behind integrating factors is to put equations in the product form above.
6. Integrating Factors

Example 6:

$$
y^{\prime}+2 y=e^{t}
$$

Trick: Multiply by $e^{2 t}$ (this is called an integrating factor)

$$
\begin{aligned}
e^{2 t} y^{\prime}+2 e^{2 t} y & =e^{2 t} e^{t} \\
\left(e^{2 t} y\right)^{\prime} & =e^{3 t} \\
e^{2 t} y & =\frac{1}{3} e^{3 t}+C \\
y & =\frac{1}{3}\left(\frac{e^{3 t}}{e^{2 t}}\right)+\frac{C}{e^{2 t}} \\
y & =\frac{1}{3} e^{t}+C e^{-2 t}
\end{aligned}
$$

Fact:

For $y^{\prime}+a y=$ Some function of t multiply by $e^{a t}$

Will see a proof of this later

Example 7:

$$
\left\{\begin{aligned}
3 y^{\prime} & =6 y+t \\
y(0) & =1
\end{aligned}\right.
$$

First write as $3 y^{\prime}-6 y=t$

Important:

Make sure the coefficient of y^{\prime} is 1

Divide both sides by 3 to get $y^{\prime}-2 y=\frac{t}{3}$ and then multiply by $e^{-2 t}$:

$$
\begin{aligned}
& e^{-2 t} y^{\prime}-2 e^{-2 t} y=e^{-2 t}\left(\frac{t}{3}\right) \\
&\left(e^{-2 t} y\right)^{\prime}=\frac{1}{3} t e^{-2 t} \\
& e^{-2 t} y=\int\left(\frac{t}{3}\right) e^{-2 t} d t \\
&=\left(\frac{t}{3}\right)\left(\frac{e^{-2 t}}{-2}\right)-\int\left(\frac{1}{3}\right)\left(\frac{e^{-2 t}}{-2}\right) d t \quad(\text { By parts }) \\
&=-\frac{t}{6} e^{-2 t}+\frac{1}{6} \int e^{-2 t} d t \\
& e^{-2 t} y=-\frac{t}{6} e^{-2 t}-\frac{1}{12} e^{-2 t}+C \\
& y=-\frac{t}{6}-\frac{1}{12}+C e^{2 t} \\
& y(0)=0-\frac{1}{12}+C e^{0}=1 \Rightarrow-\frac{1}{12}+C=1 \Rightarrow C=1+\frac{1}{12}=\frac{13}{12} \\
& y(t)=-\frac{t}{6}-\frac{1}{12}+\frac{13}{12} e^{2 t}
\end{aligned}
$$

