
LECTURE: APPLICATIONS

Today: More applications of first-order ODE

1. Example 2: To the Moon!

Example 2:

Suppose you put $100 in a savings account that pays interest at
an annual rate of 5% (compounded continuously)

How long will it take for the money to reach $250?

Let S(t) be the value of the savings at time t.

STEP 1: Derivation

Let h be a small change in time, think h = 1 second

In h amount of time, the savings will increase by (0.05S(t))h dollars

Change = S(t+ h)− S(t) = 0.05S(t)h ⇒ S(t+ h)− S(t)

h
= 0.05S(t)

Taking the limit as h → 0 we get

S ′(t) = 0.05 S(t)

STEP 2: Solution

1
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This is just our basic ODE, and so S(t) = Ce0.05t

S(0) = 100 ⇒ C = 100 ⇒ S(t) = 100e0.05t

STEP 3:

S(t) =250

100e0.05t =250

e0.05t =2.5

0.05t = ln(2.5)

t =
ln(2.5)

0.05
t ≈18.3 years
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Which is kind of crazy if you think about it! You’d have to wait 2
decades for your money to reach $250. There is nothing wrong with
this model, and 5% is pretty generous actually. It shows that savings
isn’t always the best investment.

Example:

Same question but this time you also contribute $10 a year (com-
pounded continuously)

STEP 1: Derivation:

This time you get 0.05S(t)h dollars but also contribute 10h and so

S(t+ h)− S(t) = 0.05S(t)h+ 10h ⇒ S(t+ h)− S(t)

h
= 0.05S(t) + 10

Taking the limit as h → 0 we get the ODE

S ′(t) = (0.05)S(t) + 10 = Savings growth + Contributions

STEP 2: Solution:

S ′(t)− 0.05S(t) = 10 ⇒ Use Integrating Factors

Multiplying by e−0.05t we get:
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e−0.05tS ′ − 0.05e−0.05tS =10e−0.05t(
e−0.05tS

)′
=10e−0.05t

e−0.05tS =

∫
10e−0.05tdt =

10e−0.05t

−0.05
+ C

e−0.05tS =− 200 e−0.05t + C

S(t) =− 200 + Ce0.05t

S(0) = 100 ⇒ −200 + Ce0 = 100 ⇒ C = 300

S(t) = 300e0.05t − 200

S(t) =250

300e0.05t − 200 =250

300e0.05t =450

e0.05t =
450

300
0.05t = ln (1.5)

t =
ln (1.5)

0.05
t ≈8 years
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This is a bit more reasonable! That said, it still shows that savings ac-
counts aren’t necessarily the best, because here you contributed about
100 + 8× 10 = 180, so your actual gain over the 8 years is $70.

2. Interlude: Compartmental Models

To prepare for the next example, let’s discuss an important class of
examples called a compartmental model.

Example:

Suppose water flows into a bathtub at a rate of I(t) gallons/s
(inflow rate) and flows out at a rate of O(t) gallons/s (outflow
rate). Find a differential equation for the amount of water W (t)

Main Idea: Again, pick a small time increment h, then

Change =W (t+ h)−W (t)

= Rate in × Elapsed Time − Rate out × Elapsed time

=I(t)h−O(t)h

=h (I(t)−O(t))
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This gives:
W (t+ h)−W (t)

h
= I(t)−O(h)

Taking the limit as h → 0, we then get the ODE

W ′(t) =I(t)−O(t)

In other words:

Rate of change = Amount entering − Amount exiting (per unit time)

3. Example 3: Chemical Reactions

Example 3:

A tank contains 20 kg of salt dissolved in 4000 L of water.

Water containing 0.03 kg/L of salt is entering the tank at a rate
of 10 L/min and the mixture is draining from the tank at the
same rate.

How much salt remains in the tank after half an hour?
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STEP 1: Let Q(t) be the amount of salt after t minutes in kg.

For example Q(0) = 20 kg

STEP 2: Differential Equation:
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There are two forces in play here, the mixture flowing in and the mix-
ture leaking out, so we have:

dQ

dt
= Rate in − Rate out

Rate in: The amount of salt being pumped in, measured in kg/min:

Rate in︸ ︷︷ ︸
kg/min

= Concentration︸ ︷︷ ︸
kg/L

× Rate︸ ︷︷ ︸
L/min

= (0.03 kg/L) × (10 L/min) = 0.3 kg/min

Rate out: The amount of salt being pumped out.

The concentration of salt in the tank is Weight
Volume = Q(t)

4000 , so:

Rate out = Concentration × Rate =
Q(t)

4000
× 10 =

Q(t)

400
kg/min

Therefore our differential equation is:

dQ

dt
= 0.3− Q(t)

400
⇒ Q′(t) +

Q(t)

400
= 0.3

Initial Condition: Q(0) = 20

STEP 3: Solve the ODE

Multiply by e
t

400
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e
t

400Q′ +

(
1

400

)
e

t
400Q =0.3e

t
400(

e
t

400Q
)′

=0.3e
t

400

e
t

400Q =

∫
0.3e

t
400dt

e
t

400Q =
0.3
1

400

e
t

400 + C = 120e
t

400 + C

Q =120 + Ce−
t

400

Q(0) = 20 ⇒ 120 + C = 20 ⇒ C = −100

Q(t) = 120− 100e−
t

400

STEP 4: Answer

Half an hour corresponds to 30 mins, so

Q(30) = 120− 100e−
30
400 ≈ 27.22 kg

Note: In the long run, as t → ∞, the amount of salt becomes 120
kg, which is precisely 4000 L × 0.03 kg/L (volume of tank times rate
flowing in)
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Note: Another application is Newton’s Law of Cooling, which will be
discussed on the homework

4. Example 4: Bunnies and Foxes

Note: I will not cover this example in class since it’s similar to ones
we’ve studied, but I still recommend you to look at it, especially the
derivation.

Let’s now study another population model sometimes called a predator-
prey model1

1The picture is from my bunny Oreo (2014-2021)
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Example 4:

Suppose that, on average, a bunny population reproduces at a
rate of 0.5 bunnies a month, but gets invaded by a population of
foxes that eat 450 bunnies per month. Find the population P (t)
of bunnies

Note: If no foxes are present, the bunny population is governed by

P ′(t) = 0.5P (t)

STEP 1: ODE for P (t)

Let h be a small time increment

In h months, 0.5h P (t) bunnies get produced and 450h bunnies get
eaten (doesn’t depend on number of bunnies present), so

Change =P (t+ h)− P (t) = 0.5hP (t)− 450h

P (t+ h)− P (t)

h
=0.5P (t)− 450

Taking the limit as h → 0, we get

P ′(t) = 0.5P (t)− 450

STEP 2: Qualitative Analysis

Equilibrium Solution:

0.5P (t)− 450 = 0 ⇒ P (t) =
450

0.5
= 900

Bifurcation Diagram:
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Here the equilibrium solution P = 900 is unstable

The interpretation of this is super interesting:

(1) If the initial bunny population is over 900, then the foxes have
pretty much no effect on the population, in the sense that P (t)
will increase and blow up to ∞

(2) If it is under 900, then the foxes will eventually kill off the bunny
population, P (t) will go to 0 as t → ∞
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(3) If the bunny population is 900, then it will always be 900. In
that case, the foxes precisely balances out the bunny population
to keep it constant

STEP 3: Solve the ODE

P ′(t)− 0.5P (t) = −450

Once again use the integrating factor e−0.5t:

e−0.5tP ′(t)− 0.5e−0.5tP (t) =− 450e−0.5t(
e−0.5tP (t)

)′
=− 450e−0.5t

e−0.5tP (t) =

∫
−450e−0.5t

e−0.5tP (t) =
−450

−0.5
e−0.5t + C = 900e−0.5t + C

P (t) =900 +
C

e−0.5t

P (t) =900 + Ce0.5t

Example:

Find P (t) in the following three cases:

(a) P (0) = 850

(b) P (0) = 950

(c) P (0) = 900

(a)

P (0) = 850 ⇒ 900 + Ce0.5(0) = 850 ⇒ 900 + C = 850 ⇒ C = −50
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And therefore we get P (t) = 900− 50e0.5t

Notice that P decreases until it eventually reaches 0, in which
case the bunny population gets wiped out.

(b) Similarly, in that case we get C = 50 and so P (t) = 900+50e0.5t.
In that case the bunny population grows without bound, almost
as if there are no foxes

(c) In that case, we surprisingly get C = 0 and so P (t) = 900, which
means that the foxes eat enough bunnies for the population to
not change at all!

Is this an accurate model for population growth? Probably not, the
bunny population doesn’t just shoot off to ∞ or −∞. This is why we
need better models, like the logistic equation y′ = 3y

(
1− y

20

)
that we

discussed before.
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