LINEAR ALGEBRA REVIEW

Welcome to our quick excursion into the world of linear algebra, which
is the study of vectors, matrices, and linear equations.

1. VECTORS AND MATRICES

2 3
1=5 9
(just a 2 x 2 table of numbers)

Note: In this course we’ll mainly study 2 x 2 matrices.

Date: Friday, March 24, 2023.
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Example 2: (Addition and Scalar Multiplication)
12] [3 5] _[14+3 245] _[4 7
4 6 —2 =7 |4-2 6-T7| |2 —1

23

Can also multiply a matrix with a vector, which is just a dot product:

You just take the dot product of each row of A with the vector [_1]

2
Example 4:
12 E:
If A= [3 4] and x = _552] , then

oo [ 0] [0 @] - [

This explains the process of “writing systems in matrix form”

Note: If any of this piques your interest, in the video below presents
a non-technical overview of some of the main concepts in linear algebra:

Video: Linear Algebra Overview



https://www.youtube.com/watch?v=0wLQ2R5DkJg
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2. MATRIX MULTIPLICATION

[ Video: Matrix Multiplication

The process for multiplying two matrices is similar, but trickier:

Example 5:

Calculate AB where

1 2 2 3
A:[—l 1] andB:{O 4]

In other words, we would like to calculate

1 2112 3

—1 1110 4
STEP 1: Start with the first row of A and first column of B and
take a dot product:

L 2012 3] _ [(D)2)+(2)(0) »| (2 *
-1 1|0 4| * x| |x *x
STEP 2: Fix the first row, but move on to the second column of B:

- e

STEP 3: We ran out of columns, so now dot the second row of A
and the first column of B:

1 2|12 3| 2 1y (2 11
—1 1110 4]  [(-D(©2)+(1)(0) *| |-2 =*
STEP 4: Finally, dot the second of A and the second column of B


https://www.youtube.com/watch?v=eeGBqI7eFg0 
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[—11 ﬂ [(2) 431] B [—22 (—1)(3)11 (1)(4)] - [—22 111]

Example 6:

Calculate AB and BA where

1 2 1 -3
A:[?) 4] andB:[O _4]

AB = E, i] Ll) j] - [(3)(1)+(4)(0) (3)(—3>+<4)(—4>] B E’) :éé]

BA— [é :i] [:1)) ﬂ _ [(1)(1)1(—3)(3) (1)(2)1(—3)(4)] _ {—8 —1o]

‘ In general, AB # BA \

Basically, matrices are weird.

As another example, AB=AC =B =C

Sidenote: You have already seen an instance of this in calculus, where
f(g(z)) # g(f(x)), putting your socks on and then your shoes is not
the same as putting your shoes on and then your socks.
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Al = TA = A for any matrix A

I is the analog of the number 1 in the matrix world, since for any real
number x, we have lx = x1 =«

3. MATRIX INVERSES

Finally, we can calculate the inverse A~! of a matrix A
Warning: This trick only works for 2 x 2 matrices, do NOT at-

tempt for bigger matrices (but see this video if you're curious about
the higher-order case)

You swap the diagonal entries and you negate the other entries


https://www.youtube.com/watch?v=h2Y9gKzy4Aw
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Example 8:

E Z] - (2)(4) : (1) [—41 —27] - {—41 _27]

G

So A~! literally “undoes” whatever A does, like a “cancel” button.

(AB) ' =pB1tA"!

Interpretation: To undo “putting your socks on and then your shoes,”
you first remove your shoes and then you remove your socks, in the
reverse order.

4. GAUSSIAN ELIMINATION

Video: Gaussian Elimination ]



https://youtu.be/C0ok97xFFwM

LINEAR ALGEBRA REVIEW 7

Welcome to the holy grail of linear algebra: Gaussian elimination. It’s
a tool that allows us to easily solve systems of equations.

Example 9:

x+ 3y =7
20 — oy = — 8

STEP 1: Write in matrix form
1 3|7
2 —5| =8

STEP 2: Use elementary row operations (EROS) to transform the
matrix into triangular form

Allowable moves:

(1) Interchange two rows

3 4 1 2
(2) Multiply one row by a nonzero number
1 2| 2r, |2 4
ER Rt

(3) Most common: Add/Subtract a multiple of one row to another

1 2 R2i31>%1) 1 2 _ 1 2
3 4 3+ 3x1 4+ 3%x2 6 10
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Goal: Transform the system in triangular form:

* k| K
0 %|%
In our system, this becomes:

1 317 Rg—_21;%11 3 7 _>1 3 7
2 —5| -8 0 —5—-2x3-8-2x7 0 —11|-22

STEP 3: Backsubstitution

Use EROS to transform the system into the form

1 0|«
0 1|

1 3 7+(—11R2137R1;5ﬂ>%213—37—6_>101
0 —11|—-22 0 1]2 0 1 2 0 1]2

In terms of variables, what this tells us is
r =1
y =2

{2x+3y:—5

Example 10:

3r —y =9

STEP 1:

2 3 |5
3 =119
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STEP 2: We want to turn that bottom 3 into 0:

[2 3 —5] Roosha [ 2 3
3109 () @+3 (3B -1](-
. 2 3 —5]

11 33
0 313
STEP 3: Backsubstitution
2 3 |=5] 2 [2 3 |-5
[0 -4 %] 4_0 —11 33]
(=108, 2 3] -5
0 1|-3
Ry-3; 2 3-3|-5—3(-3)
0 1 -3
. (2 0] 4]
0 1|-3]
(2)f1 (1 0] 2]
0 1|-3]

bl

Here x is the solution, but in “vector form”

5. INFINITELY MANY SOLUTIONS

|

Video: Infinitely Many Solutions



https://www.youtube.com/watch?v=kGzResy5noQ
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{2:1: + 4y =8

3x + 6y =12

2 4 4
3 6 0

OH NO!! There’s no way that we can put it in the form {

8] (2R ()R [1 2

4R2;}>2112
12 1 2

4 00

10
01

*
*
Here there are infinitely many solutions. Rewriting with x and y:
We get: v+ 2y =4=x=4—2y and so
x| |14-2y|  |4—-2y| |4 —2
<= Lol = 17 = ] = o] +o [
Point: We have infinitely many solutions, one for each y. The graph

4] and with direction vector [_2]

of the solutions is a line through [0 |

6. EIGENVALUES AND EIGENVECTORS

Video: Eigenvalues and Eigenvectors

Example 12: (Motivation)

-[9-8 - [l -


https://youtu.be/H-NxPABQlxI
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Av isn’t just random, but in fact a multiple of v. In this case, we call

V= E] an eigenvector of A and A = 7 (the multiple) an eigenvalue:

If Av = \v, then:
A is called an eigenvalue of A

v is an eigenvector of A corresponding to A

Interpr.: If v is an eigenvector, then v and Av lie on the same line!

7. FINDING EIGENVALUES

Question: How to find eigenvalues?

-1 5

Find the eigenvalues of A = [ y 6]

Motivation: This calculation won’t really make sense unless you've
taken linear algebra, but is a way of remembering the formula.

Av = v
=Av—-Av=0
=Av—-Av=0
=(A-A)v=0
=det(A— X)) =0

Here I = [(1) ﬂ is the identity matrix and |A — | is the determinant.
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Mnemonic: A — A looks like Ali (as in Muhammad Ali)

@NA—ADZ@%<;2,Q'_AB ﬂ)

00—\ 6—-0
_det<_—1—o 5—>\D

-\ 6 |

-1 5-A
=(=A)06—-A) - 6(=1)
=—5A+ A +6
=\* — 5\ +6
=(A—2)(A=3)

=0

.

Which gives A =2or A =3

Example 14:

Find the eigenvalues of A = [é g]

‘1 A ‘ (Subtract A from the diagonals)

det(A — \I) = 59
=(1—=M\)(2—=)) —5(6)
=2 — A —2X+ A\ — 30
=)\ — 3\ —28
=A=T)(A+4)
=0
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A=T7or \=—4

8. FINDING EIGENVECTORS

Question: Now how do we find eigenvectors?

5 2

Find the eigenvectors of A = [1 6]

STEP 1: Find the eigenvalues: A =7 and A = —4
STEP 2: A=7

Motivation: Av=Av=(A—-A)v=0

Strategy: For every A you found, solve (A — AI)v=20

Note: This is sometimes called the nullspace, Nul (A — \I)

1-7 6 |0
Nul(A—?I):_ - 2_70}
[-6 6 0]
|5 —5|0
+—6)Ry (+5)R: |1 —110
( )A) 1 1o
_)'1 —1 /0]
0 0 |0]

This says * —y = 0 and so x = y and
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x Y 1
X = = =
Hence E] is an eigenvector for A =7

Important: You should never find 8 I If you do, you either found

the wrong eigenvalue, or you made a mistake in your row reduction!

STEP 3: A= -4

Nul (A — (—4)1) = | 0]

o

<[ [H [

6 x5 | —6
So an eigenvector for A = —4is | 5| ~ .

It is ok to multiply an eigenvector by any (nonzero) number

9. DIAGONALIZATION

Usually you see the above question worded differently:
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Example 16:

Find D diagonal and P such that A = PDP~! where

g

A=TorA\=—-4=D= [g _04] Diagonal

Note: Ok to write D = [ 0] as long as you put in the eigenvectors

0 7
in the correct order.

For A\ = 7 we found E] and for A\ = —4 we found [ 5

1 —6
r=l Y
Here the first column of P has to be an eigenvector for A = 7 (and the

second column has to be an eigenvector for A = —4), since we chose D
in that order.

] and so

Interpretation: A = PDP~! means that A is “similar to” or “like” D

Example 17:

Find D diagonal and P such that A = PDP~! where

7 -3
A= [10 —4]

STEP 1: Eigenvalues



16 LINEAR ALGEBRA REVIEW

7T—X =3
A=
=(7=M)(=4-=X) — (=3)(10)
= — 28 — TA+ 4\ + A\ + 30
=\ -3\ +2
=(A =1 -2
=0
10 .
)\:101")\:2:D:[O 2] Diagonal
STEP 2: A\ =1
7—-1 =3 |0
Nul(A—l]):_ 0 _4_1()]
6 =310
~[10 =50
(£3)R; (=5)R, [2 —10]
|2 —1]0]
(2 10
0 0|0

Hence 22 —y =0so y =2

=)=l =~

Hence [1] is an eigenvector for A = 1

2
STEP 3: A\ =2
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7—-2 =3 |0
Nul(A—2I):_ 10 _4_20]
5 =310
~ {10 —60
32—_251_ 5 -3 0
110 — 2(5) —6—2(=3)|0
. [> =30
0 0 |0

Hence 5z — 3y =0

Faster way: (in 2 dimensions) x = 3 and y = 5 solve the equation,

so an eigenvector for A = 2 is [g]

STEP 4: Answer: A = PDP~! where

p=los Pl
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