LINEAR ALGEBRA REVIEW

Welcome to our quick excursion into the world of linear algebra, which is the study of vectors, matrices, and linear equations.

1. Vectors and Matrices

Definition: (Vector)

$$
\mathbf{b}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Example 1: (Dot Product)

$$
\left[\begin{array}{l}
2 \\
4
\end{array}\right] \cdot\left[\begin{array}{l}
5 \\
8
\end{array}\right]=(2)(5)+(4)(8)=10+32=42
$$

Definition: (Matrix)

$$
A=\left[\begin{array}{ll}
2 & 3 \\
8 & 9
\end{array}\right]
$$

(just a 2×2 table of numbers)
Note: In this course we'll mainly study 2×2 matrices.

Date: Friday, March 24, 2023.

Example 2: (Addition and Scalar Multiplication)

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 2 \\
4 & 6
\end{array}\right]+\left[\begin{array}{cc}
3 & 5 \\
-2 & -7
\end{array}\right]=\left[\begin{array}{ll}
1+3 & 2+5 \\
4-2 & 6-7
\end{array}\right]=\left[\begin{array}{cc}
4 & 7 \\
2 & -1
\end{array}\right]} \\
2\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
6 & 8
\end{array}\right]
\end{gathered}
$$

Can also multiply a matrix with a vector, which is just a dot product:

Example 3:

$$
\left[\begin{array}{ll}
1 & 2 \\
5 & 3
\end{array}\right]\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
(1)(-1)+(2)(2) \\
(5)(-1)+(2)(3)
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

You just take the dot product of each row of A with the vector $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$

Example 4:

$$
\begin{aligned}
& \text { If } A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \text { and } \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text {, then } \\
& \qquad A \mathbf{x}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
(1) x_{1}+(2) x_{2} \\
(3) x_{1}+(4) x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+2 x_{2} \\
3 x_{1}+4 x_{2}
\end{array}\right]
\end{aligned}
$$

This explains the process of "writing systems in matrix form"
Note: If any of this piques your interest, in the video below presents a non-technical overview of some of the main concepts in linear algebra:

Video: Linear Algebra Overview

2. Matrix Multiplication

Video: Matrix Multiplication
The process for multiplying two matrices is similar, but trickier:

Example 5:

Calculate $A B$ where

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
2 & 3 \\
0 & 4
\end{array}\right]
$$

In other words, we would like to calculate

$$
\left[\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
0 & 4
\end{array}\right]
$$

STEP 1: Start with the first row of A and first column of B and take a dot product:

$$
\left[\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
0 & 4
\end{array}\right]=\left[\begin{array}{cc}
(1)(2)+(2)(0) & \star \\
\star & \star
\end{array}\right]=\left[\begin{array}{cc}
2 & \star \\
\star & \star
\end{array}\right]
$$

STEP 2: Fix the first row, but move on to the second column of B :

$$
\left[\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
0 & 4
\end{array}\right]=\left[\begin{array}{cc}
2 & (1)(3)+(2)(4) \\
\star & \star
\end{array}\right]=\left[\begin{array}{cc}
2 & 11 \\
\star & \star
\end{array}\right]
$$

STEP 3: We ran out of columns, so now dot the second row of A and the first column of B :

$$
\left[\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
0 & 4
\end{array}\right]=\left[\begin{array}{cc}
2 & 11 \\
(-1)(2)+(1)(0) & \star
\end{array}\right]=\left[\begin{array}{cc}
2 & 11 \\
-2 & \star
\end{array}\right]
$$

STEP 4: Finally, dot the second of A and the second column of B

$$
\left[\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
0 & 4
\end{array}\right]=\left[\begin{array}{cc}
2 & 11 \\
-2 & (-1)(3)+(1)(4)
\end{array}\right]=\left[\begin{array}{cc}
2 & 11 \\
-2 & 1
\end{array}\right]
$$

Example 6:

Calculate $A B$ and $B A$ where

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
1 & -3 \\
0 & -4
\end{array}\right]
$$

$$
\begin{aligned}
& A B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & -3 \\
0 & -4
\end{array}\right]=\left[\begin{array}{ll}
(1)(1)+(2)(0) & (1)(-3)+(2)(-4) \\
(3)(1)+(4)(0) & (3)(-3)+(4)(-4)
\end{array}\right]=\left[\begin{array}{ll}
1 & -11 \\
3 & -25
\end{array}\right] \\
& B A=\left[\begin{array}{ll}
1 & -3 \\
0 & -4
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
(1)(1)+(-3)(3) & (1)(2)+(-3)(4) \\
(0)(1)+(-4)(3) & (0)(2)+(-4)(4)
\end{array}\right]=\left[\begin{array}{cc}
-8 & -10 \\
-12 & -16
\end{array}\right]
\end{aligned}
$$

Warning:

In general, $A B \neq B A$
Basically, matrices are weird.
As another example, $A B=A C \Rightarrow B=C$
Sidenote: You have already seen an instance of this in calculus, where $f(g(x)) \neq g(f(x))$, putting your socks on and then your shoes is not the same as putting your shoes on and then your socks.

Definition: (Identity Matrix)

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Fact:

$$
A I=I A=A \text { for any matrix } A
$$

I is the analog of the number 1 in the matrix world, since for any real number x, we have $1 x=x 1=x$

3. Matrix Inverses

Finally, we can calculate the inverse A^{-1} of a matrix A
Warning: This trick only works for 2×2 matrices, do NOT attempt for bigger matrices (but see this video if you're curious about the higher-order case)

Definition: (2×2 Inverse)

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

You swap the diagonal entries and you negate the other entries

Example 7:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]^{-1}=\frac{1}{(1)(4)-(2)(3)}\left[\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right]=\frac{1}{-2}\left[\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right]
$$

Example 8:

$$
\left[\begin{array}{ll}
2 & 7 \\
1 & 4
\end{array}\right]^{-1}=\underbrace{\frac{1}{(2)(4)-(7)(1)}}_{1}\left[\begin{array}{cc}
4 & -7 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
4 & -7 \\
-1 & 2
\end{array}\right]
$$

Just like for real numbers, we have $x\left(\frac{1}{x}\right)=\left(\frac{1}{x}\right) x=1$, here have:

Fact:

$$
A A^{-1}=A^{-1} A=I
$$

So A^{-1} literally "undoes" whatever A does, like a "cancel" button.

Fun Fact:

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

Interpretation: To undo "putting your socks on and then your shoes," you first remove your shoes and then you remove your socks, in the reverse order.

4. Gaussian Elimination

Video: Gaussian Elimination

Welcome to the holy grail of linear algebra: Gaussian elimination. It's a tool that allows us to easily solve systems of equations.

Example 9:

$$
\left\{\begin{aligned}
x+3 y & =7 \\
2 x-5 y & =-8
\end{aligned}\right.
$$

STEP 1: Write in matrix form

$$
\left[\begin{array}{cc|c}
1 & 3 & 7 \\
2 & -5 & -8
\end{array}\right]
$$

STEP 2: Use elementary row operations (EROS) to transform the matrix into triangular form

Allowable moves:

(1) Interchange two rows

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right]
$$

(2) Multiply one row by a nonzero number

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \xrightarrow{2 R_{3}}\left[\begin{array}{ll}
2 & 4 \\
3 & 4
\end{array}\right]
$$

(3) Most common: Add/Subtract a multiple of one row to another

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \xrightarrow{R_{2}+\left(3 R_{1}\right)}\left[\begin{array}{cc}
1 & 2 \\
3+3 \times 1 & 4+3 \times 2
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & 2 \\
6 & 10
\end{array}\right]
$$

Goal: Transform the system in triangular form:

$$
\left[\begin{array}{cc|c}
\star & \star & \star \\
0 & \star & \star
\end{array}\right]
$$

In our system, this becomes:

$$
\left[\begin{array}{cc|c}
1 & 3 & 7 \\
2 & -5 & -8
\end{array}\right] \xrightarrow{R_{2}-2 R_{1}}\left[\begin{array}{cc|c}
1 & 3 & 7 \\
0 & -5-2 \times 3 & -8-2 \times 7
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & 3 & 7 \\
0 & -11 & -22
\end{array}\right]
$$

STEP 3: Backsubstitution
Use EROS to transform the system into the form

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & 0 & \star \\
0 & 1 & \star
\end{array}\right]} \\
{\left[\begin{array}{cc|c}
1 & 3 & 7 \\
0 & -11 & -22
\end{array}\right] \stackrel{(-11) R_{2}}{\longrightarrow}\left[\begin{array}{ll|l}
1 & 3 & 7 \\
0 & 1 & 2
\end{array}\right] \xrightarrow{R_{1}-3 R_{2}}\left[\begin{array}{cc|c}
1 & 3-3 & 7-6 \\
0 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right]}
\end{gathered}
$$

In terms of variables, what this tells us is

$$
\left\{\begin{array}{l}
x=1 \\
y=2
\end{array}\right.
$$

Example 10:

$$
\left\{\begin{aligned}
2 x+3 y & =-5 \\
3 x-y & =9
\end{aligned}\right.
$$

STEP 1:

$$
\left[\begin{array}{cc|c}
2 & 3 & -5 \\
3 & -1 & 9
\end{array}\right]
$$

STEP 2: We want to turn that bottom 3 into 0 :

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
2 & 3 & -5 \\
3 & -1 & 9
\end{array}\right] \xrightarrow{R_{2}-\frac{3}{2} R_{1}}\left[\begin{array}{cc|c}
2 & 3 \\
\left(-\frac{3}{2}\right)(2)+3 & \left(-\frac{3}{2}\right)(3)-1 & \left(-\frac{3}{2}\right)(-5)+9
\end{array}\right] } \\
& \rightarrow\left[\begin{array}{cc|c}
2 & 3 & -5 \\
0 & -\frac{11}{2} & \frac{33}{2}
\end{array}\right]
\end{aligned}
$$

STEP 3: Backsubstitution

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
2 & 3 & -5 \\
0 & -\frac{11}{2} & \frac{33}{2}
\end{array}\right] \xrightarrow{2 R_{2}}\left[\begin{array}{cc|c}
2 & 3 & -5 \\
0 & -11 & 33
\end{array}\right]} \\
& \xrightarrow{\stackrel{-11)}{\longrightarrow}} R_{2}\left[\begin{array}{ll|l}
2 & 3 & -5 \\
0 & 1 & -3
\end{array}\right] \\
& \xrightarrow{R_{1}-3 R_{2}}\left[\begin{array}{cc|c}
2 & 3-3 & -5-3(-3) \\
0 & 1 & -3
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cc|c}
2 & 0 & 4 \\
0 & 1 & -3
\end{array}\right] \\
& \xrightarrow{(\div 2) R_{1}}\left[\begin{array}{cc|c}
1 & 0 & 2 \\
0 & 1 & -3
\end{array}\right] \\
& \left\{\begin{array}{l}
x=2 \\
y=-3
\end{array} \Rightarrow \mathbf{x}=\left[\begin{array}{c}
2 \\
-3
\end{array}\right]\right.
\end{aligned}
$$

Here \mathbf{x} is the solution, but in "vector form"

> 5. Infinitely Many Solutions

[^0]
Example 11:

$$
\left\{\begin{array}{l}
2 x+4 y=8 \\
3 x+6 y=12
\end{array}\right.
$$

$$
\left[\begin{array}{cc|c}
2 & 4 & 8 \\
3 & 6 & 12
\end{array}\right] \xrightarrow{(\div 2) R_{1}(\div 3) R_{2}}\left[\begin{array}{ll|l}
1 & 2 & 4 \\
1 & 2 & 4
\end{array}\right] \xrightarrow{R_{2}-R_{1}}\left[\begin{array}{ll|l}
1 & 2 & 4 \\
0 & 0 & 0
\end{array}\right]
$$

OH NO!! There's no way that we can put it in the form $\left[\begin{array}{ll|l}1 & 0 & \star \\ 0 & 1 & \star\end{array}\right]$
Here there are infinitely many solutions. Rewriting with x and y :

$$
\begin{gathered}
\text { We get: } x+2 y=4 \Rightarrow x=4-2 y \text { and so } \\
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
4-2 y \\
y
\end{array}\right]=\left[\begin{array}{c}
4-2 y \\
0+y
\end{array}\right]=\left[\begin{array}{l}
4 \\
0
\end{array}\right]+y\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
\end{gathered}
$$

Point: We have infinitely many solutions, one for each y. The graph of the solutions is a line through $\left[\begin{array}{l}4 \\ 0\end{array}\right]$ and with direction vector $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$

6. Eigenvalues and Eigenvectors

Video: Eigenvalues and Eigenvectors

Example 12: (Motivation)

Consider $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

$$
A \mathbf{v}=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
(1)(1)+(6)(1) \\
(5)(1)+(2)(1)
\end{array}\right]=\left[\begin{array}{l}
7 \\
7
\end{array}\right]=7\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\lambda \mathbf{v}
$$

$A \mathbf{v}$ isn't just random, but in fact a multiple of \mathbf{v}. In this case, we call $\mathbf{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ an eigenvector of A and $\lambda=7$ (the multiple) an eigenvalue:

Definition:

If $A \mathbf{v}=\lambda \mathbf{v}$, then:
λ is called an eigenvalue of A \mathbf{v} is an eigenvector of A corresponding to λ

Interpr.: If \mathbf{v} is an eigenvector, then \mathbf{v} and $A \mathbf{v}$ lie on the same line!

7. Finding Eigenvalues

Question: How to find eigenvalues?
Example 13:
Find the eigenvalues of $A=\left[\begin{array}{cc}0 & 6 \\ -1 & 5\end{array}\right]$
Motivation: This calculation won't really make sense unless you've taken linear algebra, but is a way of remembering the formula.

$$
\begin{aligned}
& A \mathbf{v}=\lambda \mathbf{v} \\
\Rightarrow & A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0} \\
\Rightarrow & A \mathbf{v}-\lambda I \mathbf{v}=\mathbf{0} \\
\Rightarrow & (A-\lambda I) \mathbf{v}=\mathbf{0} \\
\Rightarrow & \operatorname{det}(A-\lambda I)=0
\end{aligned}
$$

Here $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is the identity matrix and $|A-\lambda I|$ is the determinant.

Mnemonic: $A-\lambda I$ looks like Ali (as in Muhammad Ali)

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\left[\begin{array}{cc}
0 & 6 \\
-1 & 5
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{cc}
0-\lambda & 6-0 \\
-1-0 & 5-\lambda
\end{array}\right]\right) \\
& =\left|\begin{array}{ll}
-\lambda & 6 \\
-1 & 5-\lambda
\end{array}\right| \\
& =(-\lambda)(5-\lambda)-6(-1) \\
& =-5 \lambda+\lambda^{2}+6 \\
& =\lambda^{2}-5 \lambda+6 \\
& =(\lambda-2)(\lambda-3) \\
& =0
\end{aligned}
$$

Which gives $\lambda=2$ or $\lambda=3$
Example 14:
Find the eigenvalues of $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{cc}
1-\lambda & 6 \\
5 & 2-\lambda
\end{array}\right| \\
& =(1-\lambda)(2-\lambda)-5(6) \\
& =2-\lambda-2 \lambda+\lambda^{2}-30 \\
& =\lambda^{2}-3 \lambda-28 \\
& =(\lambda-7)(\lambda+4) \\
& =0
\end{aligned}
$$

$$
\text { (Subtract } \lambda \text { from the diagonals) }
$$

$\lambda=7$ or $\lambda=-4$

8. Finding Eigenvectors

Question: Now how do we find eigenvectors?
Example 15:
Find the eigenvectors of $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$

STEP 1: Find the eigenvalues: $\lambda=7$ and $\lambda=-4$
STEP 2: $\lambda=7$
Motivation: $A \mathbf{v}=\lambda \mathbf{v} \Rightarrow(A-\lambda I) \mathbf{v}=\mathbf{0}$
Strategy: For every λ you found, solve $(A-\lambda I) \mathbf{v}=\mathbf{0}$
Note: This is sometimes called the nullspace, $\operatorname{Nul}(A-\lambda I)$

$$
\begin{aligned}
\operatorname{Nul}(A-7 I) & =\left[\begin{array}{cc|c}
1-7 & 6 & 0 \\
5 & 2-7 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc|c}
-6 & 6 & 0 \\
5 & -5 & 0
\end{array}\right] \\
(\div-6) R_{1}(\div 5) R_{2} & {\left[\begin{array}{cc|c}
1 & -1 & 0 \\
1 & -1 & 0
\end{array}\right] } \\
& \longrightarrow\left[\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

This says $x-y=0$ and so $x=y$ and

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
y \\
y
\end{array}\right]=y\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Hence $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector for $\lambda=7$
Important: You should never find $\left[\begin{array}{l}0 \\ 0\end{array}\right]$!! If you do, you either found the wrong eigenvalue, or you made a mistake in your row reduction!

STEP 3: $\lambda=-4$

$$
\begin{aligned}
\operatorname{Nul}(A-(-4) I) & =\left[\begin{array}{ccc|c}
1-(-4) & 6 & 0 \\
& 5 & 2-(-4) & 0
\end{array}\right] \\
& =\left[\begin{array}{ll|l}
5 & 6 & 0 \\
5 & 6 & 0
\end{array}\right] \\
& \longrightarrow\left[\begin{array}{ll|l}
5 & 6 & 0 \\
0 & 0 & 0
\end{array}\right] \\
5 x+6 y & =0 \Rightarrow x=\left(-\frac{6}{5}\right) y \\
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right] & =\left[\begin{array}{c}
-\frac{6}{5} y \\
y
\end{array}\right]=y\left[\begin{array}{c}
-\frac{6}{5} \\
1
\end{array}\right]
\end{aligned}
$$

So an eigenvector for $\lambda=-4$ is $\left[\begin{array}{c}-\frac{6}{5} \\ 1\end{array}\right] \stackrel{\times 5}{\sim}\left[\begin{array}{c}-6 \\ 5\end{array}\right]$.
It is ok to multiply an eigenvector by any (nonzero) number

9. Diagonalization

Usually you see the above question worded differently:

Example 16:

Find D diagonal and P such that $A=P D P^{-1}$ where

$$
A=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]
$$

$$
\lambda=7 \text { or } \lambda=-4 \Rightarrow D=\left[\begin{array}{cc}
7 & 0 \\
0 & -4
\end{array}\right] \quad \text { Diagonal }
$$

Note: Ok to write $D=\left[\begin{array}{cc}-4 & 0 \\ 0 & 7\end{array}\right]$ as long as you put in the eigenvectors in the correct order.

For $\lambda=7$ we found $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and for $\lambda=-4$ we found $\left[\begin{array}{c}-6 \\ 5\end{array}\right]$ and so

$$
P=\left[\begin{array}{cc}
1 & -6 \\
1 & 5
\end{array}\right]
$$

Here the first column of P has to be an eigenvector for $\lambda=7$ (and the second column has to be an eigenvector for $\lambda=-4$), since we chose D in that order.

Interpretation: $A=P D P^{-1}$ means that A is "similar to" or "like" D

Example 17:

Find D diagonal and P such that $A=P D P^{-1}$ where

$$
A=\left[\begin{array}{cc}
7 & -3 \\
10 & -4
\end{array}\right]
$$

STEP 1: Eigenvalues

$$
\begin{aligned}
|A-\lambda I| & =\left|\begin{array}{cc}
7-\lambda & -3 \\
10 & -4-\lambda
\end{array}\right| \\
& =(7-\lambda)(-4-\lambda)-(-3)(10) \\
& =-28-7 \lambda+4 \lambda+\lambda^{2}+30 \\
& =\lambda^{2}-3 \lambda+2 \\
& =(\lambda-1)(\lambda-2) \\
& =0 \\
\lambda=1 \text { or } \lambda & =2 \Rightarrow D=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \quad \text { Diagonal }
\end{aligned}
$$

STEP 2: $\lambda=1$

$$
\begin{aligned}
& \operatorname{Nul}(A-1 I)=\left[\begin{array}{cc|c}
7-1 & -3 & 0 \\
10 & -4-1 & 0
\end{array}\right] \\
&=\left[\begin{array}{cc|c}
6 & -3 & 0 \\
10 & -5 & 0
\end{array}\right] \\
&(\div 3) \xrightarrow{R_{1}(\div 5) R_{2}}\left[\begin{array}{cc|c}
2 & -1 & 0 \\
2 & -1 & 0
\end{array}\right] \\
& \longrightarrow\left[\begin{array}{cc|c}
2 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Hence $2 x-y=0$ so $y=2 x$

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x \\
2 x
\end{array}\right]=x\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Hence $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector for $\lambda=1$
STEP 3: $\lambda=2$

$$
\begin{aligned}
& \operatorname{Nul}(A-2 I)=\left[\begin{array}{cc|c}
7-2 & -3 & 0 \\
10 & -4-2 & 0
\end{array}\right] \\
&=\left[\begin{array}{cc|c}
5 & -3 & 0 \\
10 & -6 & 0
\end{array}\right] \\
& \xrightarrow{R_{2}-2 R_{1}}\left[\begin{array}{ccc|c}
5 & -3 & 0 \\
10-2(5) & -6-2(-3) & 0
\end{array}\right] \\
& \longrightarrow\left[\begin{array}{cc|c}
5 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Hence $5 x-3 y=0$
Faster way: (in 2 dimensions) $x=3$ and $y=5$ solve the equation,
so an eigenvector for $\lambda=2$ is $\left[\begin{array}{l}3 \\ 5\end{array}\right]$
STEP 4: Answer: $A=P D P^{-1}$ where

$$
D=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \quad P=\left[\begin{array}{ll}
1 & 3 \\
2 & 5
\end{array}\right]
$$

[^0]: Video: Infinitely Many Solutions

