
THE WRONSKIAN

In this handout, we discuss a useful tool called the Wronskian, which
helps us solve both linear ODE and systems of ODE

1. Motivation

Example 1:

Look at y′′ − 5y′ + 6y = 0

Aux: r2 − 5r + 6 = 0 ⇒ r = 2 or r = 3

Strictly speaking, all this says is that e2t and e3t are solutions.

Question: How do we go from there to y = Ae2t +Be3t ?

Main Idea: Start from e2t and e3t as building blocks, and “build up”
our solution by using linear combinations

Linear Fact:

For linear homogeneous ODE:

(1) A constant times a solution is still a solution

(2) The sum of two solutions is still a solution.

Starting from e2t and e3t, (1) says that Ae2t and Be3t are solutions for
any A and B, and (2) says that the sum Ae2t+Be3t is a solution.
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Could there be other solutions? In theory the answer could be yes, but
it turns out that the answer is no: those are indeed all the solutions.
The reason for this uses an important tool called the Wronskian:

2. The Wronskian

Definition:

The Wronskian of f and g is

W (t) =

∣∣∣∣f(t) g(t)
f ′(t) g′(t)

∣∣∣∣
Note: This is sometimes written as W [f(t), g(t)]

Example 2:

Find the Wronskian of f(t) = t2 and g(t) = t3

W (t) =

∣∣∣∣t2 t3

2t 3t2

∣∣∣∣ = (
t2
) (

3t2
)
−

(
t3
)
(2t) = 3t4 − 2t4 = t4

Example 3:

Same but f(t) = t and g(t) = ln(t)

W (t) =

∣∣∣∣t ln(t)
1 1

t

∣∣∣∣ = t

(
1

t

)
− ln(t)(1) = 1− ln(t)
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Note: For arbitrary functions, the Wronskian can change sign, like
W (t) = 1 − ln(t) above. But if our functions solve an ODE, then
something truly special happens:

Remember that for y′′ − 5y′ + 6y = 0 we had the solutions e2t and e3t

Let’s look at their Wronskian:

Example 4:

Find the Wronskian of f(t) = e2t and g(t) = e3t

W (t) =

∣∣∣∣ e2t e3t

2e2t 3e3t

∣∣∣∣ = e2t
(
3e3t

)
−

(
2e2t

)
e3t = 3e5t − 2e5t = e5t ̸= 0

Notice here that the Wronskian of e2t and e3t is never 0.

On the other hand, the general solution of the ODE is y = Ae2t+Be3t.
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The miracle is that those two remarks are related:

Wronskian Miracle:

If f(t) and g(t) solve a second order ODE, then

(1) The Wronskian W (t) is either always zero or never zero

(2) If W (t) is never zero, the general solution to the ODE is

y = Af(t) +Bg(t)

Here: The Wronskian of e2t and e3t is W (t) = e5t ̸= 0, so (2) says that
the general solution is y = Ae2t +Be3t. There are no other solutions.

Here is an example where the Wronskian is always zero.

Example 5:

Find the Wronskian of f(t) = e2t and g(t) = 3e2t

W (t) =

∣∣∣∣ e2t 3e2t

2e2t 6e2t

∣∣∣∣ = e2t
(
6e2t

)
−

(
3e2t

) (
2e2t

)
= 6e4t − 6e4t = 0

Here one function is a multiple of the other. This is always true for
linear ODE: If the Wronskian is 0, then one function is a multiple of
the other one (more generally: linearly dependent), and if it is never
zero, then they are linearly independent.

3. Fundamental Solutions

Because of the Wronskian Miracle above, it is useful to look for so-
lutions of ODE whose Wronskian is nonzero. They have their own
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special name:

Definition:

We say f(t) and g(t) are fundamental solutions if:

(1) They solve a second-order linear ODE

(2) Their Wronskian W (t) is nonzero

(Technically it’s called a fundamental sol set since they come in pairs)

Example 6:

e2t and e3t are fundamental solutions of y′′ − 5y′ + 6y = 0

Example 7:

Show that cos(t) and sin(t) are fundamental solutions of y′′+y = 0
and solve that ODE.

STEP 1: Check cos(t) and sin(t) solve y′′ + y = 0

(cos(t))′′ + cos(t) = (− sin(t))′ + cos(t) = − cos(t) + cos(t) = 0✓

Similarly for sin(t)

STEP 2:

W (t) =

∣∣∣∣ cos(t) sin(t)
− sin(t) cos(t)

∣∣∣∣ = cos2(t) + sin2(t) = 1 ̸= 0

STEP 3: From the Wronskian miracle above we have

y = A cos(t) +B sin(t)
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Example 8:

Same but
√
t and 1

t for 2t
2y′′ + 3ty′ − y = 0 (with t > 0)

STEP 1: Check solutions. Notice
√
t = t

1
2

2t2
(
t
1
2

)′′
+ 3t

(
t
1
2

)′
− t

1
2

=2t2
(
1

2
t−

1
2

)′
+ 3t

1

2
t−

1
2 − t

1
2

=t2
(
−1

2

)
t−

3
2 +

3

2
t
1
2 − t

1
2

=− 1

2
t
1
2 +

3

2
t
1
2 − t

1
2

=0

Similarly for 1
t = t−1

STEP 2: Wronskian

W (t) =

∣∣∣∣√t 1
t

1
2
√
t

− 1
t2

∣∣∣∣ = √
t

(
− 1

t2

)
−1

t

(
1

2
√
t

)
= − 1

t
√
t
− 1

2t
√
t
= − 3

2t
√
t
̸= 0

Therefore
√
t and 1

t are fundamental solutions

STEP 3: General Solution

y = A
√
t+B

(
1

t

)
4. Abel’s Formula
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Video: Abel’s Formula

Here is the coolest fact you need to know about the Wronskian:

How cool is it that the Wronskian, a tool used to solve ODE, itself
solves a differential equation!

Suppose y′′ + Py′ +Qy = 0, then:

Abel’s Formula

W ′ + PW = 0

Mnemonic: W ′ + PassWord = 0

We can solve this using the integrating factor e
∫
P to get:

W = Ce−
∫
P

(Beware of the minus sign!!)

Consequence: This formula explains why the Wronskian is either al-
ways zero (if C = 0) or never zero (if C ̸= 0)

Two Applications: First, we can use this to find the Wronskian
without knowing the solutions f(t) and g(t) beforehand.

Example 9: (Application 1)

Find W (t) where cos(t)y′′ + sin(t)y′ − ty = 0

https://www.youtube.com/watch?v=zJGKCWcmGuE
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STEP 1: Divide by cos(t)

y′′ +

(
sin(t)

cos(t)

)
y′ −

(
t

cos(t)

)
y = 0

P (t) = sin(t)
cos(t) = tan(t)

STEP 2: By Abel’s Formula, we get

W (t) = Ce−
∫
P = Ce−

∫
tan(t)dt = Ce− ln sec(t) =

C

eln sec(t)
=

C

sec(t)
= C cos(t)

(C depends on which solutions we have)

More importantly, given one solution to a differential equation, we can
use this to find another solution:

Example 10: (Application 2)

Suppose one solution to t2y′′ + ty′ − y = 0 is f(t) = t. Find
another solution g(t) and then find the general solution y

STEP 1: Divide by t2:

y′′ +

(
1

t

)
y′ −

(
1

t2

)
y = 0

P (t) =
1

t
STEP 2: By Abel’s Formula:

W (t) = Ce−
∫
P = Ce−

∫
1
t = Ce− ln(t) =

C

eln(t)
=

C

t
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Note: Since we’re looking for one solution, we can let C = 1, and so

W (t) =
1

t

STEP 3: Use the definition of W (t) with f(t) = t and g(t) TBA

W (t) =

∣∣∣∣t g(t)
1 g′(t)

∣∣∣∣ = tg′(t)− g(t)
WANT
=

1

t

This is a differential equation for g(t), which we can now solve:

STEP 4: Solve this using integrating factors

tg′ − g =
1

t

g′ +

(
−1

t

)
g =

1

t2

P = −1

t
⇒ e

∫
P = e

∫
− 1

t = e− ln(t) =
1

t(
1

t

)
g′ −

(
1

t

)(
1

t

)
g =

(
1

t

)(
1

t2

)
((

1

t

)
g

)′
=
1

t3(
1

t

)
g =

∫
t−3 =

t−2

−2
= − 1

2t2

g(t) =t

(
− 1

2t2

)
= − 1

2t

STEP 5: From last time, we then get that the general solution is

y = Af(t) +Bg(t) = At+B

(
− 1

2t

)
= At+

B

t



10 THE WRONSKIAN

(Since B is just an arbitrary constant, so the −1
2 gets absorbed in B)

Note: You can get some pretty unexpected solutions from this!

Example 11: (see Video below)

One solution to y′′− tan(t)y′+2y = 0 is f(t) = sin(t). Using this
method, another solution is

g(t) = −1 + sin(t) coth−1(sin(t))

Video: Abel’s Formula

5. Systems

All the theory from second order equations translates almost verbatim
to systems. In particular, here again the Wronskian appears

Example 12:

Find fundamental solutions and a fundamental matrix of
x′ = Ax where

A =

[
1 1
5 −3

]

STEP 1: Eigenvalues

https://www.youtube.com/watch?v=zJGKCWcmGuE
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|A− λI| =
∣∣∣∣1− λ 1

5 −3− λ

∣∣∣∣
=(1− λ)(−3− λ)− 5

=− 3− λ+ 3λ+ λ2 − 5

=λ2 + 2λ− 8

=(λ+ 4)(λ− 2) = 0

Which gives λ = −4 and λ = 2

STEP 2: λ = −4

Nul (A−(−4)I) =

[
1− (−4) 1 0

5 −3− (−4) 0

]
=

[
5 1 0
5 1 0

]
−→

[
5 1 0
0 0 0

]
5x+ y = 0 ⇒ y = −5x

x =

[
x
y

]
=

[
x

−5x

]
= x

[
1
−5

]
STEP 3: λ = 2

Nul (A− 2I) =

[
1− 2 1 0
5 −3− 2 0

]
=

[
−1 1 0
5 −5 0

]
→

[
−1 1 0
1 −1 0

]
→

[
−1 1 0
0 0 0

]
−x+ y = 0 ⇒ y = x
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x =

[
x
y

]
=

[
x
x

]
= x

[
1
1

]
STEP 4: Solution

x(t) = C1e
−4t

[
1
−5

]
+ C2e

2t

[
1
1

]
= C1

[
e−4t

−5e−4t

]
+ C2

[
e2t

e2t

]
Definition: (Fundamental Solutions)

x1(t) =

[
e−4t

−5e−4t

]
and x2(t) =

[
e2t

e2t

]
Means:

(1) x1(t) and x2(t) solve the ODE

(2) x1(t) and x2(t) are linearly independent (not multiples of each
other)

The fundamental matrix is just putting this into a matrix:

Definition: (Fundamental Matrix)

Ψ(t) =

[
e−4t e2t

−5e−4t e2t

]
Means: The columns of Ψ(t) are fundamental solutions, they satisfy
(1) and (2).

The determinant of Ψ(t) is called the Wronskian
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Definition: (Wronskian)

W (t) =

∣∣∣∣ e−4t e2t

−5e−4t e2t

∣∣∣∣ = e−4te2t−e2t(−5e−4t) = e−2t+5e−2t = 6e−2t

Fact:

For solutions of linear ODE, W (t) is either always 0 or never 0.

In the second case, the general solution of the ODE is

C1x1(t) + C2x2(t)

Where x1 and x2 are the columns of Ψ(t)

Here W (t) ̸= 0 and so the general solution is

x(t) = C1

[
e−4t

−5e−4t

]
+ C2

[
e2t

e2t

]
= C1e

−4t

[
1
−5

]
+ C2e

2t

[
1
1

]
Example 13:

Find the general solution of

x′ =

[
2/t −1/t
3/t −2/t

]
x

Assume that x1 =

[
t
t

]
and x2 =

[
1/t
3/t

]
solve the ODE

W (t) =

∣∣∣∣t 1/t
t 3/t

∣∣∣∣ = t

(
3

t

)
−

(
1

t

)
t = 3− 1 = 2 ̸= 0
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The Wronskian is nonzero, and therefore the general solution is

x(t) = C1x1(t) + C2x2(t) = C1

[
t
t

]
+ C2

[
1/t
3/t

]

6. Abel’s Formula

The amazing thing is that, once again, the Wronskian W (t) satisfies
its own differential equation:

Definition: (Trace)

Tr

[
2 4
3 8

]
= 2 + 8 = 10 (Sum of Diagonal Terms)

Abel’s Formula

For solutions of ODE, the Wronskian satisfies

W ′(t) = Tr(A)W (t)

Example 14:

x′ = Ax with A =

[
1 1
5 −3

]

W ′(t) = (1− 3)W (t) ⇒ W ′(t) = −2W (t) ⇒ W (t) = Ce−2t

And in fact we previously found that W (t) = 6e−2t

This again shows that the Wronskian is either always zero or never zero.
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Example 15:

Find W (t) where x′ =

[
3/t −2/t
2/t −2/t

]
x

W ′(t) =

(
3

t
− 2

t

)
W (t) =

1

t
W (t)

W ′(t)−1

t
W (t) = 0

Integrating Factor: e−
∫

1
t dt = e− ln(t) =

1

eln(t)
=

1

t(
1

t

)
W ′(t) +

(
1

t

)(
−1

t

)
W (t) =0(

1

t
W (t)

)′
=0

1

t
W (t) =C

W (t) =Ct

Application: Given one solution x1, we can use this to find another
solution x2:

Example 16:

One solution of the ODE

x′ =

[
3/t −2/t
2/t −2/t

]
x

Is x1 =

[
1/t
2/t

]
Find another solution x2 and solve the ODE
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Assume the other solution is x2 =

[
f(t)
g(t)

]
STEP 1: From before, we know that W (t) = Ct, and so W (t) = t
(just need one solution).

But W (t) =

∣∣∣∣1/t f(t)
2/t g(t)

∣∣∣∣ = t(
1

t

)
g(t)− f(t)

(
2

t

)
=t

g(t)− 2f(t) =t2

g(t) =t2 + 2f(t)

x2 =

[
f(t)
g(t)

]
=

[
f(t)

t2 + 2f(t)

]
STEP 2: Plug this into the ODE

x2
′ =

[
3/t −2/t
2/t −2/t

]
x2[

f ′(t)
2t+ 2f ′(t)

]
=

[
3/t −2/t
2/t −2/t

] [
f(t)

t2 + 2f(t)

]
The first line gives us

f ′(t) =

(
3

t

)
f(t)−

(
2

t

)(
t2 + 2f(t)

)
f ′(t) =

(
3

t

)
f(t)− 2t−

(
4

t

)
f(t)

f ′(t) =− 1

t
f(t)− 2t

f ′(t)+

(
1

t

)
f(t) = −2t
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STEP 3: Integrating factor

e
∫

1
t dt = eln(t) = t

tf ′(t) + t

(
1

t

)
f(t) =t (−2t)

(tf(t))′ =− 2t2

tf(t) =− 2

3
t3

f(t) =− 2

3
t2

g(t) = t2 + 2f(t) = t2 + 2

(
−2

3
t2
)

= t2 − 4

3
t2 = −1

3
t2

STEP 4: x2(t)

x2(t) =

[
f(t)
g(t)

]
=

[
(−2/3) t2

(−1/3) t2

]
×(−3)∼

[
2t2

t2

]
= t2

[
2
1

]
STEP 5: General Solution

x(t) = C1x1(t) + C2x2(t) = C1

(
1

t

)[
1
2

]
+ C2t

2

[
2
1

]
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