LECTURE: EXISTENCE AND UNIQUENESS

Let's continue our exploration of existence and uniqueness:

1. Another Crazy Example

Video: Dangerous Differential Equation

Example 1:

$$
\left\{\begin{aligned}
y^{\prime} & =y^{2} \\
y(0) & =1
\end{aligned}\right.
$$

$$
\begin{gathered}
y^{\prime}=y^{2} \\
\frac{y^{\prime}}{y^{2}}=1 \\
\left(-\frac{1}{y}\right)^{\prime}=1 \\
-\frac{1}{y}=t+C \\
y=-\frac{1}{t+C} \\
y(0)=1 \Rightarrow-\frac{1}{0+C}=1 \Rightarrow-\frac{1}{C}=1 \Rightarrow C=-1 \\
y=-\left(\frac{1}{t-1}\right)=\frac{1}{1-t}
\end{gathered}
$$

Here the solution blows up at $t=1$

While solutions can exist for short time (near $t=0$), they can still blow up for large time, at $t=1$, like bacteria that are short-lived.

2. Existence and Uniqueness

Isn't this depressing? What is true about ODE then? When do we have a unique solution? This is the point of the celebrated ODE Existence/Uniqueness Theorem:

Existence/Uniqueness Theorem:

Consider the ODE

$$
\left\{\begin{aligned}
y^{\prime} & =f(y, t) \\
y(0) & =y_{0}
\end{aligned}\right.
$$

Where y_{0} is a given number
If f and $\frac{\partial f}{\partial y}$ are continuous, then the ODE has a unique solution $y=y(t)$ for t close enough to 0

In other words, as long as f is smooth enough, there is a unique solution, at least for short time

Remarks:

(1) $\frac{\partial f}{\partial y}$ is the partial derivative of f with respect to y
(you differentiate f with respect to y, treating t as a constant)
(2) "Close enough to 0 " means there is some $\delta>0$ such that $y(t)$ exists on $(-\delta, \delta)$
(3) It's actually enough for f and $\frac{\partial f}{\partial y}$ to be continuous near ($0, y_{0}$)
(4) There is nothing special about 0 , this theorem holds for any initial time t_{0}

Example 2:

Does the following ODE has a unique solution?

$$
\left\{\begin{aligned}
y^{\prime} & =(y+t)^{2} \sin (t) \\
y(10) & =-5
\end{aligned}\right.
$$

$f(y, t)=(y+t)^{2} \sin (t)$, which is continuous, and furthermore

$$
\frac{\partial f}{\partial y}=2(y+t) \sin (t) \text { is continuous }
$$

So the answer is YES at least for some short time around $t=10$

What went wrong in the examples that we discussed?

For $y^{\prime}=\sqrt{y}$ the theorem fails because even though $f(y, t)=\sqrt{y}$ continuous, $\frac{\partial f}{\partial y}=\frac{1}{2 \sqrt{y}}$ is not continuous near $y=0$.

For $y^{\prime}=y^{2}$ the theorem is technically true, but remember it guarantees only existence for small t. We don't know anything about existence for large t (thereare theorems though that guarantee long-time existence)

Cool Application: Because of uniqueness, solutions of $y^{\prime}=f(y, t)$ can never cross! Because if they did, we can take the point of intersection as the initial value y_{0} and then get two solutions with the same initial condition, like in the picture below:

A couple of words about the proof:
STEP 1: Transform the differential equation into an integral equation:

$$
\begin{aligned}
& y^{\prime}=f(y, t) \\
& \int_{0}^{t} y^{\prime}(s) d s=\int_{0}^{t} f(y(s), s) d s \\
& y(t)-y(0)=\int_{0}^{t} f(y, s) d s \\
& y(t)=y_{0}+\int_{0}^{t} f(y, s) d s
\end{aligned}
$$

In general, differential equations and integral equations are equivalent
STEP 2: Define the right-hand-side as

$$
g(y)=y_{0}+\int_{0}^{t} f(y, s) d s
$$

And show that $g(y)=y$, that is g has a "fixed point."
STEP 3: To do this, you use the "Banach Fixed Point Theorem," which is a theorem (outside the scope of this class) that tells us when a function has a fixed point. It's in that theorem where we use the continuity of f and $\frac{\partial f}{\partial y}$.

Intuitively, you need continuity of $\frac{\partial f}{\partial y}$ to show that f doesn't spread out points too much, we want to make sure that if $\left|y_{1}-y_{2}\right|$ is small, then so is $\left|f\left(y_{1}, s\right)-f\left(y_{2}, s\right)\right|$

Check out the video below for details and if you want to learn more about the proof.

Video: ODE Existence/Uniqueness Theorem

Note: Fixed point theorems are really cool, here are a couple of fun applications:
(1) If you shake a snowglobe, there is one snowflake that didn't change position
(2) There is one point on a world map that points exactly where your finger points
(3) (related) There are two opposite points on earth that have the same pressure and temperature (called the Borsuk-Ulam Theorem)

3. Separation of Variables: Motivation

Let's finally solve some differential equations!
Goal: Solve separable equations, which are equations of the form

$$
\frac{d y}{d t}=\frac{f(t)}{g(y)}
$$

Example 3:

$$
\frac{d y}{d t}=\frac{2 t}{y^{2}}
$$

Note: Below we'll find a faster way of doing this
STEP 1: Put all the y on one side and all the t on the other side:

$$
y^{2}\left(\frac{d y}{d t}\right)=2 t
$$

STEP 2: Integrate each side with respect to t

$$
\int y^{2}\left(\frac{d y}{d t}\right) d t=\int 2 t d t
$$

For the left-hand-side, use the $u-\operatorname{sub} y=y(t)$ then $d y=\left(\frac{d y}{d t}\right) d t$ and this becomes

$$
\int y^{2} d y=\int 2 t d t
$$

(Notice the power of the chain rule/ u-sub here)
Now you can find anti-derivatives and get

$$
\begin{aligned}
\left(\frac{1}{3}\right) y^{3}+C & =t^{2}+C^{\prime} \\
\left(\frac{1}{3}\right) y^{3} & =t^{2}+\underbrace{C^{\prime}-C}_{C} \\
y^{3} & =3 t^{2}+\underbrace{3 C}_{C} \\
y & =\sqrt[3]{3 t^{2}+C}
\end{aligned}
$$

4. Separation of Variables

Here is a faster way of doing this:

Example 4:

$$
\left\{\begin{aligned}
t^{2}\left(\frac{d y}{d t}\right) & =\left(1-t^{2}\right)\left(y^{2}+1\right) \\
y(1) & =0
\end{aligned}\right.
$$

STEP 1: cross-multiply, treating $d y$ and $d t$ as separate entities:

$$
\begin{aligned}
t^{2} d y & =\left(1-t^{2}\right)\left(y^{2}+1\right) d t \\
\frac{d y}{y^{2}+1} & =\left(\frac{1-t^{2}}{t^{2}}\right) d t \\
\int\left(\frac{1}{y^{2}+1}\right) d y & =\int \frac{1}{t^{2}}-1 d t \\
\tan ^{-1}(y) & =-\frac{1}{t}-t+C \\
y & =\tan \left(-\frac{1}{t}-t+C\right)
\end{aligned}
$$

STEP 2: To solve for C, use $y(1)=0$, so $t=1$ and $y=0$

$$
\begin{gathered}
\tan (-1-1+C)=0 \Rightarrow \tan (-2+C)=0 \Rightarrow-2+C=\pi m \Rightarrow C=2+\pi m \\
y=\tan \left(-\frac{1}{t}-t+2+\pi m\right)=\tan \left(-\frac{1}{t}-t+2\right)
\end{gathered}
$$

Remark: The two methods seem different, but they're actually the same. In fact, if you used the first method, you would have obtained

$$
\int \frac{1}{y^{2}+1}\left(\frac{d y}{d t}\right) d y=\int \frac{1}{t^{2}}-1 d t \Rightarrow \int \frac{1}{y^{2}+1} d y=\int \frac{1}{t^{2}}-1 d t
$$

Which is the same result that we got here.

