APMA 0350 - MIDTERM 1

1. (5 points) Solve the ODE and write your answer in explicit form

$$
\left\{\begin{aligned}
t\left(y^{\prime}\right)+2 y & =\frac{\cos (t)}{t} \quad(t>0) \\
y(\pi) & =1
\end{aligned}\right.
$$

2. (5 points) Solve the ODE and write your answer in explicit form

$$
\left\{\begin{aligned}
y^{\prime} & =t\left(y^{2}\right)\left(1+t^{2}\right)^{-\frac{1}{2}} \\
y(0) & =\frac{1}{3}
\end{aligned}\right.
$$

3. (5 points) Find the value of k for which this ODE is exact, and solve the ODE with that value of k. Write your answer in explicit form

$$
\left(y e^{2 x y}+x\right) d x+\left(k x e^{2 x y}\right) d y=0
$$

4. (5 points) Suppose you model the growth of bacteria with the following ODE

$$
\left\{\begin{aligned}
\frac{d y}{d t} & =(\sin (t)) y \\
y(0) & =y_{0}
\end{aligned}\right.
$$

Calculate the time it takes for the initial population to triple. Does your answer depend on y_{0} ?

Note: Please calculate the exact answer, no need to give an approximate answer.
5. (5 points) Use Euler's method with $N=2$ steps to find an approximate value of $y(5)$ where y solves

$$
\left\{\begin{aligned}
y^{\prime} & =2 y-1 \\
y(1) & =3
\end{aligned}\right.
$$

Note: No need to actually solve the ODE
6. (5 points) Use auxiliary equations to solve

$$
\left\{\begin{aligned}
y^{\prime \prime}-2 y^{\prime}+5 y & =0 \\
y\left(\frac{\pi}{2}\right) & =0 \\
y^{\prime}\left(\frac{\pi}{2}\right) & =-2
\end{aligned}\right.
$$

