APMA 0350 - MIDTERM 2

Note: Don't forget to use the Laplace table on the course website.

1. (6 points) Find the eigenvalues and eigenfunctions of

$$
\left\{\begin{aligned}
y^{\prime \prime} & =\lambda y \\
y(0) & =0 \\
y^{\prime}(2 \pi) & =0
\end{aligned}\right.
$$

2. (6 points) Solve using undetermined coefficients

$$
\left\{\begin{aligned}
y^{\prime \prime}+4 y & =4 \sin (2 t) \\
y(0) & =0 \\
y^{\prime}(0) & =7
\end{aligned}\right.
$$

3. (6 points) Use var of par to find a particular solution y_{p} of

$$
t^{2}\left(y^{\prime \prime}\right)+t\left(y^{\prime}\right)+\left(t^{2}-\frac{1}{4}\right) y=t^{\frac{3}{2}}
$$

Note: Assume that $t^{-\frac{1}{2}} \cos (t)$ and $t^{-\frac{1}{2}} \sin (t)$ solve the homogeneous equation. Simplify your final answer.
4. (6 points) Solve the following ODE

$$
\left\{\begin{aligned}
y^{\prime \prime}+9 y & =(18 t) \star \delta(t-5) \\
y(0) & =0 \\
y^{\prime}(0) & =1
\end{aligned}\right.
$$

5. (6 points) Find a function $f(t)$ whose Laplace transform is

$$
\frac{(s+1) e^{-4 s}}{s^{2}+6 s+11}
$$

