APMA 0350 - FINAL EXAM

1. (5 points) Solve the following system $\mathbf{x}^{\prime}=A \mathbf{x}$ and draw a phase portrait where

$$
A=\left[\begin{array}{cc}
6 & -1 \\
5 & 4
\end{array}\right]
$$

2. (5 points) Use matrix exponentials to solve $\mathbf{x}^{\prime}=A \mathbf{x}$ where

$$
A=\left[\begin{array}{cc}
-6 & 4 \\
-1 & -2
\end{array}\right] \quad \mathbf{x}(0)=\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
$$

3. (5 points, 1 point each) Guess the form of the particular solution \mathbf{x}_{p} to $\mathrm{x}^{\prime}=A \mathbf{x}+\mathbf{f}$ where

$$
A=\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]
$$

(a) $\mathbf{f}=\left[\begin{array}{c}e^{2 t} \\ 3 e^{2 t}\end{array}\right]$
(b) $\mathbf{f}=\left[\begin{array}{l}7 t e^{3 t} \\ 4 e^{-4 t}\end{array}\right]$
(c) $\mathbf{f}=\left[\begin{array}{c}2 e^{5 t} \\ e^{5 t}\end{array}\right]$
(d) $\mathbf{f}=\left[\begin{array}{c}e^{5 t} \cos (t) \\ e^{3 t} \sin (2 t)\end{array}\right]$
(e) $\mathbf{f}=\left[\begin{array}{c}2 e^{5 t} \\ e^{-t}\end{array}\right]$
4. (5 points) Use Var of Par to find a particular solution $\mathbf{x}_{\mathbf{p}}$ to $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}$ where

$$
A=\left[\begin{array}{ll}
2 & -5 \\
1 & -2
\end{array}\right] \text { and } \mathbf{f}=\left[\begin{array}{c}
5 \sec (t) \\
0
\end{array}\right]
$$

5. (5 points) Find and classify the equilibrium point(s) of

$$
\left\{\begin{array}{l}
x^{\prime}=-x+2 x y \\
y^{\prime}=y-x^{2}-y^{2}
\end{array}\right.
$$

6. (5 points) Let's model the population of elves between Chocolatetown and Vanillaville. Every day, we simultaneously have

- 30 elves exit Chocolatetown (not from Vanilaville)
- 20% of elves move from Chocolatetown to Vanillaville
- 50% of elves move from Vanillaville to Chocolatetown
- 10 elves enter Vanillaville (not to Chocolatetown)

Let $x(t)$ and $y(t)$ be the number of elves in Chocolatetown and Vanillaville respectively, where t is in days and let $\mathbf{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$ Suppose our model is $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}$

Find A and \mathbf{f} and include a diagram similar to the chemical tank problem. No justification required

