ANALYSIS – HOMEWORK 1

Problem 1: Show that \mathbb{Z} (with the usual metric) is complete

Problem 2: Let (X, d) be a metric space and suppose (x_n) in X is a sequence with the property that every subsequence has a further subsequence that converges to x. Prove that (x_n) converges to x.

Problem 3:

- (a) Suppose (x_n) is a bounded sequence in \mathbb{R} with the property that every *convergent* subsequence of (x_n) converges to x. Show that (x_n) converges to x.
- (b) Show that (a) is false if (x_n) is not bounded

Problem 4: Draw a picture of the unit ball B((0,0),1) (the open ball centered at (0,0) and radius 1) of each of the following metric spaces:

(a)
$$(\mathbb{R}^2, d_2)$$
 where $d_2(\mathbf{x}, \mathbf{y}) = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2}$
(b) (\mathbb{R}^2, d_1) where $d_1(\mathbf{x}, \mathbf{y}) = |y_1 - x_1| + |y_2 - x_2|$
(c) (\mathbb{R}^2, d_∞) where $d_\infty(\mathbf{x}, \mathbf{y}) = \max\{|y_1 - x_1|, |y_2 - x_2|\}$

Problem 5: Find a metric space (X, d) for which the boundary $\partial B(x, r)$ of B(x, r) is **NOT** equal to the sphere of radius r at x, that is $\{y \in S \mid d(x, y) = r\}$

Definition:

- (1) If (X, d) is a metric space, then we say E is **dense** in X if $\overline{E} = X$
- (2) (X, d) is **separable** if there is a countable subset E of X that is dense in X

Problem 6: Show that \mathbb{R}^k is separable

Problem 7: (more challenging) Show that if (X, d) is a complete metric space and $\{U_n\}_{n=1}^{\infty}$ is a countable collection of open dense subsets of X, then $\bigcap_{n=1}^{\infty} U_n$ is dense in X.

Problem 8: Show that if (X, d) is a metric space and $f : [0, \infty) \to [0, \infty)$ is an increasing concave function such that

$$f(x) = 0 \Leftrightarrow x = 0$$

Then f(d(x, y)) is also a metric

Problem 9: Show that if (X_k, d_k) is a family of metric spaces, then the following is a metric on the product space $\prod_{k=1}^{\infty} X_k$

$$d(x,y) = \sum_{k=1}^{\infty} \frac{1}{2^k} \left(\frac{d_k(x_k, y_k)}{1 + d_k(x_k, y_k)} \right)$$

Problem 10: Let a > 0 and $b > \sqrt{a}$ be given. Define a sequence (s_n) by $s_1 = b$ and

$$s_{n+1} = \frac{1}{2} \left(s_n + \frac{a}{s_n} \right)$$

Show that (s_n) is a decreasing sequence that converges to \sqrt{a} .