HOMEWORK 2 – SOLUTIONS

Problem 1:

(a)

$$\begin{aligned} x \in (g \circ f)^{-1}(U) \Leftrightarrow (g \circ f)(x) \in U \\ \Leftrightarrow g(f(x)) \in U \\ \Leftrightarrow f(x) \in g^{-1}(U) \\ \Leftrightarrow x \in f^{-1} \left(g^{-1}(U)\right) \end{aligned}$$

(b) Suppose U is open, then since g is continuous, $g^{-1}(U)$ is open, and hence, since f is continuous, $f^{-1}(g^{-1}(U))$ is open, and therefore

$$(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$$
 is open \checkmark

Hence $g \circ f$ is continuous

Problem 2: Let $\epsilon > 0$ be given, let $\delta = \frac{1}{2}$, then if $d(x, x_0) < \delta = \frac{1}{2} < 1$, then $x = x_0$, and therefore

$$d'(f(x), f(x_0)) = d'(f(x_0), f(x_0)) = 0 < \epsilon \checkmark$$

Hence any f is continuous

Problem 3: Suppose E is path-connected but not connected. Since E is not connected, there are A and B, nonempty, open, and disjoint such that $A \cup B = E$.

Since A and B are nonempty, there is $a \in A$ and $b \in B$.

Since γ is path-connected, there is a path $\gamma : [0, 1] \to E$ with $\gamma(0) = a$ and $\gamma(1) = b$

Now consider $A' = \gamma^{-1}(A)$ and $B' = \gamma^{-1}(B)$. Then since A and B are open and γ is continuous, we get A' and B' are open.

Moreover $0 \in A'$ since $\gamma(0) = a \in A$ and therefore A' is nonempty, and similarly B' is nonempty, and finally

$$A' \cap B' = \gamma^{-1}(A' \cap B') = \gamma^{-1}(A') \cap \gamma^{-1}(B') = A \cap B = \emptyset$$

$$A' \cup B' = \gamma^{-1}(A' \cup B') = \gamma^{-1}(A') \cup \gamma^{-1}(B') = A \cup B = [0, 1]$$

But therefore A' and B' are disjoint, open, nonempty subsets of [0, 1] whose union in [0, 1], which contradicts that [0, 1] is connected $\Rightarrow \Leftarrow$.

Hence E must be connected

For \mathbb{R} , let $a, b \in \mathbb{R}$ and consider the path $\gamma(t) = (1-t)a + tb$, which is continuous and has values in \mathbb{R} and $\gamma(0) = a$ and $\gamma(1) = b \checkmark$

Problem 4: Suppose not, then there is c such that $f(x) \neq c$ for all $x \in [a, b]$. This means that for all x, either f(x) > c or f(x) < c, and therefore $[a, b] = A \cup B$ where

$$A = \{x \in [a, b] \mid f(x) < c\} = f^{-1}((-\infty, c))$$
$$B = \{x \in [a, b] \mid f(x) > c\} = f^{-1}((c, \infty))$$

Now $A \cup B = \emptyset$ and A and B are nonempty since either f(a) or f(b) are in A or B

Moreover, A and B are open since f is continuous and $(-\infty, c)$ and (c, ∞) are open.

And therefore $[a, b] = A \cup B$ with A and B nonempty, open, and disjoint, which contradicts the fact that [a, b] is connected. $\Rightarrow \Leftarrow \Box$

Problem 5: Suppose (I_n) is a decreasing sequence of nonempty, closed, and bounded subsets of \mathbb{R}^n and let $I = \bigcap_{n=1}^{\infty} I_n$.

I is closed: This is because the intersection of any number of closed sets is closed

I is bounded: This is because, $I \subseteq I_1$ and I_1 is bounded by assumption.

F is nonempty: For each $n = 1, 2, ..., I_n$ is nonempty, so let x_n be an element of I_n .

Consider the sequence (x_n) . Since for all $n, x_n \in I_n \subseteq I_1, x_n \in I_1$ for all n, and since I_1 is bounded (by assumption), then the sequence (x_n) is bounded (in \mathbb{R}^n).

Therefore, by the **Bolzano-Weierstrass** (x_n) has a subsequence (x_{n_k}) that converges to some $x \in \mathbb{R}^n$.

Claim: x is in I

Note: Then we would be done because, since $x \in I$, I is nonempty.

To show $x \in I$, we must show that for all $n_0 \in \mathbb{N}$, $x \in I_{n_0}$.

Let n_0 be arbitrary.

Then, for any $k \ge n_0$, we have $n_k \ge n_0$

Therefore, $I_{n_k} \subseteq I_{n_0}$ (since sets I_n are decreasing).

Therefore, for every $k \ge n_0 x_{n_k} \in I_{n_k}$ (by definition) $\subseteq I_{n_0}$ and so $x_{n_k} \in I_{n_0}$.

But then this means that all the terms of the sequence (x_{n_k}) are eventually in I_{n_0}

Therefore, since I_0 is closed (by assumption) the limit x of (x_{n_k}) is also in I_{n_0} , hence $x \in I_{n_0}$.

Hence, since n_0 was arbitrary we get $x \in I$, so I is nonempty. \checkmark

Problem 6: STEP 1: Suppose [0, 1] can be written as the disjoint union of $[a_k, b_k]$ where $k \in \mathbb{N}$.

Let $x_0 = b_1$ and assume $b_1 < 1$ (since the union is countably infinite and the intervals are disjoint).

Then for some $0 < \epsilon_1 < \frac{1}{2}$, $x_0 + \epsilon_1 \in (0, 1)$, so $x_0 + \epsilon_1$ lies in some $[a_k, b_k]$. Let $x_1 = a_k > x_0$.

Then

$$|x_1 - x_0| = x_1 - x_0 = a_k - x_0 \le x_0 + \epsilon_1 - x_0 = \epsilon_1 < \frac{1}{2}$$

Continuing, for some $\epsilon_2 < \frac{1}{4}$, $x_1 - \epsilon_2 \in (0, 1)$ lies in some $[a_l, b_l]$, then let $x_2 = b_l$. So $x_0 < x_1 < x_2$ and $|x_1 - x_2| < \frac{1}{4}$.

STEP 3: Now suppose we have found $x_0, x_1, \ldots, x_{2k-1}, x_{2k}$ with

$$x_0 < x_2 < \dots < x_{2k} < \dots < x_{2k-1} < \dots < x_1$$

And $|x_{2k+1} - x_{2k}| < \frac{1}{2^k}$

Then for some $\epsilon_{2k+1} < \frac{1}{2^{k+1}}$, $x_{2k} + \epsilon_{2k+1} \in (0,1)$, so $x_{2k} + \epsilon_{2k+1}$ lies in some $[a_l, b_l]$. Let $x_{2k+1} = a_l > x_{2k}$ and we can choose ϵ_{2k+1} small enough so that $x_{2k+1} < x_{2k-1}$.

And for some $\epsilon_{2k+2} < \frac{1}{2^{2k+2}}$, $x_{2k+2} - \epsilon_{2k+2} \in (0,1)$ lies in some $[a_p, b_p]$, then let $x_{2k+2} = b_p$. So $x_{2k+2} > x_{2k}$ and we can choose ϵ_{2k+2} small enough with $x_{2k+2} < x_{2k+1} \checkmark$

STEP 4: Now consider the nested closed intervals $[x_{2n}, x_{2n+1}]$. By the Finite Intersection property $\bigcap_{n=1}^{\infty} [x_{2n}, x_{2n+1}]$ is nonempty, so there is $x \in [x_{2n}, x_{2n+1}]$. Because $|x_{2n+1} - x_{2n}| < 2^{-n}$, one can show that, as in problem 10.6, that (x_n) converges to x.

STEP 5:

Claim: $x \notin [0, 1]$

Proof: Suppose $x \in [0,1] = \bigcup_{n=1}^{\infty} [a_n, b_n]$, then $x \in [a_p, b_p]$ for some p

If x > 0, then, since the subsequence (x_{2k}) is monotonically increasing and converges to x, there must be some n with $a_p < x_{2n} < x$. But by construction, x_{2k} is the right point of a sub-interval, so $x_{2k} = b_l$ for some l, which contradict the fact that $x \in [a_p, b_p]$ and the intervals are disjoint. $\Rightarrow \Leftarrow$, so there are no b_l between a_p and b_p .

Hence x = 0 but this contradicts $x > x_0 \ge 0$.

Problem 7: Using the definition of totally bounded with $r = \frac{1}{k}$ (for $k \in \mathbb{N}$), for all k, we can cover E with finitely many balls $B\left(x_1^k, \frac{1}{k}\right), B\left(x_2^k, \frac{1}{k}\right), \dots B$ (

Let F be the union of the centers $\{x_1^k, \ldots, x_{n_k}^k\}$ as k ranges over all the integers. Then F is countable, being the countable union of finitely many sets.

Claim: F is dense in E

Let $x \in E$ and r > 0, we need to find $y \in F$ such that $y \in B(x, r)$. But if r is given, choose k large enough such that $\frac{1}{k} < r$. Then, since the balls $B\left(x_1^k, \frac{1}{k}\right), B\left(x_2^k, \frac{1}{k}\right), \ldots B\left(x_{n_k}^k\right)$ cover E, we must have $x \in B\left(x_j^k, \frac{1}{k}\right)$ for some j. But then, by definition, $y =: x_j^k \in F$ (it's the center of a ball), but also $d(x, y) < \frac{1}{k} < r$, so $y \in B(x, r) \checkmark$ **Problem 8:**

F bounded: Notice that:

$$F = \{x \mid \sup\{|x_j|, j = 1, 2, ...\} \le 1\}$$

= $\{x \mid \sup\{|x_j - 0|, j = 1, 2, ...\} \le 1\}$
= $\{x \mid d(x, \mathbf{0}) \le 1\}$
= $\overline{B(\mathbf{0}, 1)}$

Hence F is included in the (closed) ball of center $\mathbf{0} = (0, 0, 0, ...)$ and radius 1, and hence is bounded. \checkmark

F closed: Suppose $(x^{(n)})$ is a sequence in F that converges to x. Want to show $x \in F$.

But since each $x^{(n)}$ is in F, we have:

$$\sup\left\{ \left| x_{j}^{(n)} \right|, j=1,2,\ldots, \right\} \leq 1$$

So for all n and all j, $\left|x_{j}^{(n)}\right| \leq 1$

But now, letting n go to infinity and using $x(n) \to x$, we get $|x_j| \le 1$, where $x = (x_1, x_2, ...)$ And since this is true for all j, we have:

$$\sup\{|x_j|, j=1,2,\dots\} \le 1$$

F not compact:

STEP 1: Suppose, for sake of contradiction, that F is compact.

For each $x \in F$, let

$$U(x) = B(x, 1) = \{ y \in B \mid d(y, x) < 1 \}$$

STEP 2: For each $n \in \mathbb{N}$, let $x^{(n)}$ be defined by:

$$x_j^{(n)} = \begin{cases} -1 & \text{if } j = n\\ 1 & \text{if } j \neq n \end{cases}$$

Then for each j, $\left|x_{j}^{(n)}\right| = 1 \leq 1$, so $\sup\left\{\left|x_{j}^{(n)}\right|, j = 1, 2, \dots\right\} \leq 1$ and so $(x^{(n)}) \in F$

STEP 3:

Claim: If $x \in F$, then $m \neq n$ then $x^{(m)}$ and $x^{(n)}$ cannot both belong to U(x)

Proof: Suppose $x^{(m)}$ and $x^{(n)}$ both belong to U(x), then by definition of U(x), we have $d(x^{(m)}, x) < 1$ and $(x^{(m)}, x) < 1$, so

$$d(x^{(m)}, x^{(n)}) \le d(x^{(m)}, x) + d(x^{(n)}, x) < 1 + 1 = 2$$

That is

$$\sup\left\{ \left|x_j^{(m)}-x_j^{(n)}\right|, j=1,2,\dots\right\}<2$$
 So for all $j,$
 $\left|x_j^{(m)}-x_j^{(n)}\right|<2$

But if you let j = n, then you get (since $m \neq n$)

$$\left|x_{n}^{(m)}-x_{n}^{(n)}\right| = \left|1-(-1)\right| = 2 < 2$$

Which is a contradiction \checkmark

STEP 4: Define:

$$\mathcal{U} = \{ U(x) \mid x \in F \}$$

Then \mathcal{U} is an open cover of F and therefore has a finite sub-cover $\mathcal{V} = \{U(x_1), \ldots, U(x_n)\}.$

Now since $x^{(1)} \in F$, then, since \mathcal{V} is a sub-cover, we must have $x^{(1)} \in V$ for some $V \in \mathcal{V}$, and WLOG assume $V = U(x_1)$, hence $x^{(1)} \in U(x_1)$.

Similarly $x^{(2)} \in V$ for some $V \in \mathcal{V}$. However by the above claim, $x^{(2)}$ cannot be in $U(x_1)$ since $x^{(1)}$ is already in $U(x_1)$, so $x^{(2)}$ must be in

some different element of \mathcal{V} , so WLOG, assume $x^{(2)} \in U(x_2)$.

Continuing in this manner, we get that $x^{(k)} \in U(x_k)$ for k = 1, ..., n, but then $x^{(n+1)}$ cannot be in \mathcal{V} since it cannot be in any of the $U(x_1), ..., U(x_n)$ since $n + 1 \neq 1, 2, ..., n$ but this contradicts that \mathcal{V} covers $E \Rightarrow \Leftarrow$ **Problem 9:** Consider $f : (0, 1) \to \mathbb{R}$ defined by

$$f(x) = \tan^{-1}\left(\pi x - \frac{\pi}{2}\right)$$

Then, one can check that $g(x) = \pi x - \frac{\pi}{2}$ is continuous, one-to-one, and onto, and its inverse is continuous and therefore a homeomorphism.

Also since $\tan : \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$ is continuous and one-to-one and onto \mathbb{R} (you can show this using the fact that $\tan(x) \to \pm \infty$ near $\pm \frac{\pi}{2}$ and an analog of the Intermediate Value Theorem), its inverse \tan^{-1} is continuous, and therefore a homeomorphism

Hence f(x) is a homeomorphism, being a composition of two homeomorphisms, and therefore (0, 1) and \mathbb{R} are homeomorphic.

Problem 10:

(a) Since f is continuous, one-to-one, and onto its image, it suffices to show that f^{-1} is continuous.

Claim: f is continuous if and only if for each closed set $C, f^{-1}(C)$ is closed

This follows because if f is continuous and C is closed, then C^c is open, and therefore $f^{-1}(C^c)$ is open, hence $(f^{-1}(C))^c$ is open, so $f^{-1}(C)$ is closed \checkmark

Conversely, if $f^{-1}(C)$ is closed whenever C is closed, then if U is any open set, then U^c is closed, so by assumption $f^{-1}(U^c)$ is closed, and therefore $(f^{-1}(U))^c$ is closed, and so $f^{-1}(U)$ is open, so f is continuous \checkmark

Now suppose C is an arbitrary closed subset of K, then since K is compact, C is a closed subset of a compact set, and hence compact. Therefore, since C is compact and f is continuous, f(C) is compact, and hence closed.

Therefore, whenever C is closed, f(C) is closed, and by the claim below, it follows that $(f^{-1})^{-1}(C) = f(C)$ is closed, and so f^{-1} is continuous since f was arbitrary

Claim: $(f^{-1})^{-1}(C) = f(C)$

Proof:

$$x \in (f^{-1})^{-1}(C) \Leftrightarrow f^{-1}(x) \in C$$
$$\Leftrightarrow f(f^{-1}(x)) \in f(C)$$
$$\Leftrightarrow x \in f(C)\checkmark \Box$$

(b) Let

$$(x_n) = \left(\cos\left(2\pi - \frac{1}{n}\right), \sin\left(2\pi - \frac{1}{n}\right)\right)$$

Then (x_n) converges to (1,0), but $f^{-1}(x_n) = 2\pi - \frac{1}{n}$ converges to $2\pi \neq f^{-1}((1,0)) = 0$.

Hence f^{-1} is not continuous.