HOMEWORK 2 - SOLUTIONS

Problem 1:

(a)

$$
\begin{aligned}
x \in(g \circ f)^{-1}(U) & \Leftrightarrow(g \circ f)(x) \in U \\
& \Leftrightarrow g(f(x)) \in U \\
& \Leftrightarrow f(x) \in g^{-1}(U) \\
& \Leftrightarrow x \in f^{-1}\left(g^{-1}(U)\right)
\end{aligned}
$$

(b) Suppose U is open, then since g is continuous, $g^{-1}(U)$ is open, and hence, since f is continuous, $f^{-1}\left(g^{-1}(U)\right)$ is open, and therefore

$$
(g \circ f)^{-1}(U)=f^{-1}\left(g^{-1}(U)\right) \text { is open } \checkmark
$$

Hence $g \circ f$ is continuous
Problem 2: Let $\epsilon>0$ be given, let $\delta=\frac{1}{2}$, then if $d\left(x, x_{0}\right)<\delta=\frac{1}{2}<1$, then $x=x_{0}$, and therefore

$$
d^{\prime}\left(f(x), f\left(x_{0}\right)\right)=d^{\prime}\left(f\left(x_{0}\right), f\left(x_{0}\right)\right)=0<\epsilon \checkmark
$$

Hence any f is continuous
Problem 3: Suppose E is path-connected but not connected. Since E is not connected, there are A and B, nonempty, open, and disjoint such that $A \cup B=E$.

Since A and B are nonempty, there is $a \in A$ and $b \in B$.
Since γ is path-connected, there is a path $\gamma:[0,1] \rightarrow E$ with $\gamma(0)=a$ and $\gamma(1)=b$

Now consider $A^{\prime}=\gamma^{-1}(A)$ and $B^{\prime}=\gamma^{-1}(B)$. Then since A and B are open and γ is continuous, we get A^{\prime} and B^{\prime} are open.

Moreover $0 \in A^{\prime}$ since $\gamma(0)=a \in A$ and therefore A^{\prime} is nonempty, and similarly B^{\prime} is nonempty, and finally

$$
\begin{aligned}
& A^{\prime} \cap B^{\prime}=\gamma^{-1}\left(A^{\prime} \cap B^{\prime}\right)=\gamma^{-1}\left(A^{\prime}\right) \cap \gamma^{-1}\left(B^{\prime}\right)=A \cap B=\emptyset \\
& A^{\prime} \cup B^{\prime}=\gamma^{-1}\left(A^{\prime} \cup B^{\prime}\right)=\gamma^{-1}\left(A^{\prime}\right) \cup \gamma^{-1}\left(B^{\prime}\right)=A \cup B=[0,1]
\end{aligned}
$$

But therefore A^{\prime} and B^{\prime} are disjoint, open, nonempty subsets of $[0,1]$ whose union in $[0,1]$, which contradicts that $[0,1]$ is connected $\Rightarrow \Leftarrow$.

Hence E must be connected
For \mathbb{R}, let $a, b \in \mathbb{R}$ and consider the path $\gamma(t)=(1-t) a+t b$, which is continuous and has values in \mathbb{R} and $\gamma(0)=a$ and $\gamma(1)=b \checkmark$

Problem 4: Suppose not, then there is c such that $f(x) \neq c$ for all $x \in[a, b]$. This means that for all x, either $f(x)>c$ or $f(x)<c$, and therefore $[a, b]=A \cup B$ where

$$
\begin{aligned}
A & =\{x \in[a, b] \mid f(x)<c\} \\
B & =f^{-1}((-\infty, c)) \\
B & =\{x \in[a, b] \mid f(x)>c\}=f^{-1}((c, \infty))
\end{aligned}
$$

Now $A \cup B=\emptyset$ and A and B are nonempty since either $f(a)$ or $f(b)$ are in A or B

Moreover, A and B are open since f is continuous and $(-\infty, c)$ and (c, ∞) are open.
And therefore $[a, b]=A \cup B$ with A and B nonempty, open, and disjoint, which contradicts the fact that $[a, b]$ is connected. $\Rightarrow \Leftarrow \quad \square$

Problem 5: Suppose $\left(I_{n}\right)$ is a decreasing sequence of nonempty, closed, and bounded subsets of \mathbb{R}^{n} and let $I=\bigcap_{n=1}^{\infty} I_{n}$.
I is closed: This is because the intersection of any number of closed sets is closed
I is bounded: This is because, $I \subseteq I_{1}$ and I_{1} is bounded by assumption.
F is nonempty: For each $n=1,2, \ldots, I_{n}$ is nonempty, so let x_{n} be an element of I_{n}.

Consider the sequence $\left(x_{n}\right)$. Since for all $n, x_{n} \in I_{n} \subseteq I_{1}, x_{n} \in I_{1}$ for all n, and since I_{1} is bounded (by assumption), then the sequence $\left(x_{n}\right)$ is bounded (in \mathbb{R}^{n}).

Therefore, by the Bolzano-Weierstrass $\left(x_{n}\right)$ has a subsequence $\left(x_{n_{k}}\right)$ that converges to some $x \in \mathbb{R}^{n}$.

Claim: x is in I

Note: Then we would be done because, since $x \in I, I$ is nonempty.
To show $x \in I$, we must show that for all $n_{0} \in \mathbb{N}, x \in I_{n_{0}}$.

Let n_{0} be arbitrary.
Then, for any $k \geq n_{0}$, we have $n_{k} \geq n_{0}$
Therefore, $I_{n_{k}} \subseteq I_{n_{0}}$ (since sets I_{n} are decreasing).
Therefore, for every $k \geq n_{0} x_{n_{k}} \in I_{n_{k}}$ (by definition) $\subseteq I_{n_{0}}$ and so $x_{n_{k}} \in I_{n_{0}}$.

But then this means that all the terms of the sequence $\left(x_{n_{k}}\right)$ are eventually in $I_{n_{0}}$

Therefore, since I_{0} is closed (by assumption) the limit x of $\left(x_{n_{k}}\right)$ is also in $I_{n_{0}}$, hence $x \in I_{n_{0}}$.

Hence, since n_{0} was arbitrary we get $x \in I$, so I is nonempty. \checkmark
Problem 6: STEP 1: Suppose $[0,1]$ can be written as the disjoint union of $\left[a_{k}, b_{k}\right]$ where $k \in \mathbb{N}$.

Let $x_{0}=b_{1}$ and assume $b_{1}<1$ (since the union is countably infinite and the intervals are disjoint).

Then for some $0<\epsilon_{1}<\frac{1}{2}, x_{0}+\epsilon_{1} \in(0,1)$, so $x_{0}+\epsilon_{1}$ lies in some $\left[a_{k}, b_{k}\right]$. Let $x_{1}=a_{k}>x_{0}$.

Then

$$
\left|x_{1}-x_{0}\right|=x_{1}-x_{0}=a_{k}-x_{0} \leq x_{0}+\epsilon_{1}-x_{0}=\epsilon_{1}<\frac{1}{2}
$$

Continuing, for some $\epsilon_{2}<\frac{1}{4}, x_{1}-\epsilon_{2} \in(0,1)$ lies in some $\left[a_{l}, b_{l}\right]$, then let $x_{2}=b_{l}$. So $x_{0}<x_{1}<x_{2}$ and $\left|x_{1}-x_{2}\right|<\frac{1}{4}$.

STEP 3: Now suppose we have found $x_{0}, x_{1}, \ldots, x_{2 k-1}, x_{2 k}$ with

$$
x_{0}<x_{2}<\cdots<x_{2 k}<\cdots<x_{2 k-1}<\cdots<x_{1}
$$

And $\left|x_{2 k+1}-x_{2 k}\right|<\frac{1}{2^{k}}$
Then for some $\epsilon_{2 k+1}<\frac{1}{2^{k+1}}, x_{2 k}+\epsilon_{2 k+1} \in(0,1)$, so $x_{2 k}+\epsilon_{2 k+1}$ lies in some $\left[a_{l}, b_{l}\right]$. Let $x_{2 k+1}=a_{l}>x_{2 k}$ and we can choose $\epsilon_{2 k+1}$ small enough so that $x_{2 k+1}<x_{2 k-1}$.

And for some $\epsilon_{2 k+2}<\frac{1}{2^{2 k+2}}, x_{2 k+2}-\epsilon_{2 k+2} \in(0,1)$ lies in some $\left[a_{p}, b_{p}\right]$, then let $x_{2 k+2}=b_{p}$. So $x_{2 k+2}>x_{2 k}$ and we can choose $\epsilon_{2 k+2}$ small enough with $x_{2 k+2}<x_{2 k+1} \checkmark$

STEP 4: Now consider the nested closed intervals $\left[x_{2 n}, x_{2 n+1}\right]$. By the Finite Intersection property $\cap_{n=1}^{\infty}\left[x_{2 n}, x_{2 n+1}\right]$ is nonempty, so there is $x \in\left[x_{2 n}, x_{2 n+1}\right]$. Because $\left|x_{2 n+1}-x_{2 n}\right|<2^{-n}$, one can show that, as in problem 10.6, that $\left(x_{n}\right)$ converges to x.

STEP 5:

Claim: $x \notin[0,1]$
Proof: Suppose $x \in[0,1]=\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right]$, then $x \in\left[a_{p}, b_{p}\right]$ for some p
If $x>0$, then, since the subsequence $\left(x_{2 k}\right)$ is monotonically increasing and converges to x, there must be some n with $a_{p}<x_{2 n}<x$. But by construction, $x_{2 k}$ is the right point of a sub-interval, so $x_{2 k}=b_{l}$ for
some l, which contradict the fact that $x \in\left[a_{p}, b_{p}\right]$ and the intervals are disjoint. $\Rightarrow \Leftarrow$, so there are no b_{l} between a_{p} and b_{p}.

Hence $x=0$ but this contradicts $x>x_{0} \geq 0$.
Problem 7: Using the definition of totally bounded with $r=\frac{1}{k}$ (for $k \in \mathbb{N}$), for all k, we can cover E with finitely many balls $B\left(x_{1}^{k}, \frac{1}{k}\right), B\left(x_{2}^{k}, \frac{1}{k}\right), \ldots B$ (

Let F be the union of the centers $\left\{x_{1}^{k}, \ldots, x_{n_{k}}^{k}\right\}$ as k ranges over all the integers. Then F is countable, being the countable union of finitely many sets.

Claim: F is dense in E
Let $x \in E$ and $r>0$, we need to find $y \in F$ such that $y \in B(x, r)$. But if r is given, choose k large enough such that $\frac{1}{k}<r$. Then, since the balls $B\left(x_{1}^{k}, \frac{1}{k}\right), B\left(x_{2}^{k}, \frac{1}{k}\right), \ldots B\left(x_{n_{k}}^{k}\right)$ cover E, we must have $x \in B\left(x_{j}^{k}, \frac{1}{k}\right)$ for some j. But then, by definition, $y=: x_{j}^{k} \in F$ (it's the center of a ball), but also $d(x, y)<\frac{1}{k}<r$, so $y \in B(x, r) \checkmark$
Problem 8:
F bounded: Notice that:

$$
\begin{aligned}
F & =\left\{x \mid \sup \left\{\left|x_{j}\right|, j=1,2, \ldots\right\} \leq 1\right\} \\
& =\left\{x \mid \sup \left\{\left|x_{j}-0\right|, j=1,2, \ldots\right\} \leq 1\right\} \\
& =\{x \mid d(x, \mathbf{0}) \leq 1\} \\
& =\overline{B(\mathbf{0}, 1)}
\end{aligned}
$$

Hence F is included in the (closed) ball of center $\mathbf{0}=(0,0,0, \ldots)$ and radius 1 , and hence is bounded.

F closed: Suppose $\left.\left(x^{(} n\right)\right)$ is a sequence in F that converges to x. Want to show $x \in F$.

But since each $x^{(n)}$ is in F, we have:

$$
\sup \left\{\left|x_{j}^{(n)}\right|, j=1,2, \ldots,\right\} \leq 1
$$

So for all n and all $j,\left|x_{j}^{(n)}\right| \leq 1$
But now, letting n go to infinity and using $\left.x^{(} n\right) \rightarrow x$, we get $\left|x_{j}\right| \leq 1$, where $x=\left(x_{1}, x_{2}, \ldots\right)$ And since this is true for all j, we have:

$$
\sup \left\{\left|x_{j}\right|, j=1,2, \ldots\right\} \leq 1
$$

F not compact:

STEP 1: Suppose, for sake of contradiction, that F is compact.
For each $x \in F$, let

$$
U(x)=B(x, 1)=\{y \in B \mid d(y, x)<1\}
$$

STEP 2: For each $n \in \mathbb{N}$, let $x^{(n)}$ be defined by:

$$
x_{j}^{(n)}= \begin{cases}-1 & \text { if } j=n \\ 1 & \text { if } j \neq n\end{cases}
$$

Then for each $j,\left|x_{j}^{(n)}\right|=1 \leq 1$, so $\sup \left\{\left|x_{j}^{(n)}\right|, j=1,2, \ldots\right\} \leq 1$ and so $\left(x^{(n)}\right) \in F$

STEP 3:

Claim: If $x \in F$, then $m \neq n$ then $x^{(m)}$ and $x^{(n)}$ cannot both belong to $U(x)$

Proof: Suppose $x^{(m)}$ and $x^{(n)}$ both belong to $U(x)$, then by definition of $U(x)$, we have $d\left(x^{(m)}, x\right)<1$ and $\left(x^{(m)}, x\right)<1$, so

$$
d\left(x^{(m)}, x^{(n)}\right) \leq d\left(x^{(m)}, x\right)+d\left(x^{(n)}, x\right)<1+1=2
$$

That is

$$
\sup \left\{\left|x_{j}^{(m)}-x_{j}^{(n)}\right|, j=1,2, \ldots\right\}<2
$$

So for all $j,\left|x_{j}^{(m)}-x_{j}^{(n)}\right|<2$
But if you let $j=n$, then you get (since $m \neq n$)

$$
\left|x_{n}^{(m)}-x_{n}^{(n)}\right|=|1-(-1)|=2<2
$$

Which is a contradiction \checkmark
STEP 4: Define:

$$
\mathcal{U}=\{U(x) \mid x \in F\}
$$

Then \mathcal{U} is an open cover of F and therefore has a finite sub-cover $\mathcal{V}=\left\{U\left(x_{1}\right), \ldots, U\left(x_{n}\right)\right\}$.

Now since $x^{(1)} \in F$, then, since \mathcal{V} is a sub-cover, we must have $x^{(1)} \in V$ for some $V \in \mathcal{V}$, and WLOG assume $V=U\left(x_{1}\right)$, hence $x^{(1)} \in U\left(x_{1}\right)$.

Similarly $x^{(2)} \in V$ for some $V \in \mathcal{V}$. However by the above claim, $x^{(2)}$ cannot be in $U\left(x_{1}\right)$ since $x^{(1)}$ is already in $U\left(x_{1}\right)$, so $x^{(2)}$ must be in
some different element of \mathcal{V}, so WLOG, assume $x^{(2)} \in U\left(x_{2}\right)$.
Continuing in this manner, we get that $x^{(k)} \in U\left(x_{k}\right)$ for $k=1, \ldots, n$, but then $x^{(n+1)}$ cannot be in \mathcal{V} since it cannot be in any of the $U\left(x_{1}\right), \ldots, U\left(x_{n}\right)$ since $n+1 \neq 1,2, \ldots, n$ but this contradicts that \mathcal{V} covers $E \Rightarrow \Leftarrow$ Problem 9: Consider $f:(0,1) \rightarrow \mathbb{R}$ defined by

$$
f(x)=\tan ^{-1}\left(\pi x-\frac{\pi}{2}\right)
$$

Then, one can check that $g(x)=\pi x-\frac{\pi}{2}$ is continuous, one-to-one, and onto, and its inverse is continuous and therefore a homeomorphism.

Also since $\tan :\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$ is continuous and one-to-one and onto \mathbb{R} (you can show this using the fact that $\tan (x) \rightarrow \pm \infty$ near $\pm \frac{\pi}{2}$ and an analog of the Intermediate Value Theorem), its inverse $\tan ^{-1}$ is continuous, and therefore a homeomorphism

Hence $f(x)$ is a homeomorphism, being a composition of two homeomorphisms, and therefore $(0,1)$ and \mathbb{R} are homeomorphic.

Problem 10:

(a) Since f is continuous, one-to-one, and onto its image, it suffices to show that f^{-1} is continuous.

Claim: f is continuous if and only if for each closed set $C, f^{-1}(C)$ is closed

This follows because if f is continuous and C is closed, then C^{c} is open, and therefore $f^{-1}\left(C^{c}\right)$ is open, hence $\left(f^{-1}(C)\right)^{c}$ is open, so $f^{-1}(C)$ is closed \checkmark

Conversely, if $f^{-1}(C)$ is closed whenever C is closed, then if U is any open set, then U^{c} is closed, so by assumption $f^{-1}\left(U^{c}\right)$ is closed, and therefore $\left(f^{-1}(U)\right)^{c}$ is closed, and so $f^{-1}(U)$ is open, so f is continuous \checkmark

Now suppose C is an arbitrary closed subset of K, then since K is compact, C is a closed subset of a compact set, and hence compact. Therefore, since C is compact and f is continuous, $f(C)$ is compact, and hence closed.

Therefore, whenever C is closed, $f(C)$ is closed, and by the claim below, it follows that $\left(f^{-1}\right)^{-1}(C)=f(C)$ is closed, and so f^{-1} is continuous since f was arbitrary

Claim: $\left(f^{-1}\right)^{-1}(C)=f(C)$

Proof:

$$
\begin{aligned}
x \in\left(f^{-1}\right)^{-1}(C) & \Leftrightarrow f^{-1}(x) \in C \\
& \Leftrightarrow f\left(f^{-1}(x)\right) \in f(C) \\
& \Leftrightarrow x \in f(C) \checkmark \quad \square
\end{aligned}
$$

(b) Let

$$
\left(x_{n}\right)=\left(\cos \left(2 \pi-\frac{1}{n}\right), \sin \left(2 \pi-\frac{1}{n}\right)\right)
$$

Then $\left(x_{n}\right)$ converges to $(1,0)$, but $f^{-1}\left(x_{n}\right)=2 \pi-\frac{1}{n}$ converges to $2 \pi \neq f^{-1}((1,0))=0$.

Hence f^{-1} is not continuous.

