
HOMEWORK 2 − SOLUTIONS

Problem 1:

(a)
x ∈ (g ◦ f)−1(U) ⇔(g ◦ f)(x) ∈ U

⇔g(f(x)) ∈ U

⇔f(x) ∈ g−1(U)

⇔x ∈ f−1
(
g−1(U)

)
(b) Suppose U is open, then since g is continuous, g−1(U) is open,

and hence, since f is continuous, f−1
(
g−1(U)

)
is open, and

therefore

(g ◦ f)−1 (U) = f−1
(
g−1(U)

)
is open ✓

Hence g ◦ f is continuous □

Problem 2: Let ϵ > 0 be given, let δ = 1
2 , then if d(x, x0) < δ = 1

2 < 1,
then x = x0, and therefore

d′(f(x), f(x0)) = d′(f(x0), f(x0)) = 0 < ϵ✓

Hence any f is continuous □

Problem 3: Suppose E is path-connected but not connected. Since
E is not connected, there are A and B, nonempty, open, and disjoint
such that A ∪B = E.
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Since A and B are nonempty, there is a ∈ A and b ∈ B.

Since γ is path-connected, there is a path γ : [0, 1] → E with γ(0) = a
and γ(1) = b

Now consider A′ = γ−1(A) and B′ = γ−1(B). Then since A and B are
open and γ is continuous, we get A′ and B′ are open.

Moreover 0 ∈ A′ since γ(0) = a ∈ A and therefore A′ is nonempty, and
similarly B′ is nonempty, and finally

A′ ∩B′ =γ−1(A′ ∩B′) = γ−1(A′) ∩ γ−1(B′) = A ∩B = ∅
A′ ∪B′ =γ−1(A′ ∪B′) = γ−1(A′) ∪ γ−1(B′) = A ∪B = [0, 1]

But therefore A′ and B′ are disjoint, open, nonempty subsets of [0, 1]
whose union in [0, 1], which contradicts that [0, 1] is connected ⇒⇐.

Hence E must be connected

For R, let a, b ∈ R and consider the path γ(t) = (1− t)a+ tb, which is
continuous and has values in R and γ(0) = a and γ(1) = b ✓

Problem 4: Suppose not, then there is c such that f(x) ̸= c for all
x ∈ [a, b]. This means that for all x, either f(x) > c or f(x) < c, and
therefore [a, b] = A ∪B where

A = {x ∈ [a, b] | f(x) < c} = f−1((−∞, c))

B = {x ∈ [a, b] | f(x) > c} = f−1((c,∞))

Now A ∪ B = ∅ and A and B are nonempty since either f(a) or f(b)
are in A or B
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Moreover, A and B are open since f is continuous and (−∞, c) and
(c,∞) are open.
And therefore [a, b] = A ∪ B with A and B nonempty, open, and dis-
joint, which contradicts the fact that [a, b] is connected. ⇒⇐ □

Problem 5: Suppose (In) is a decreasing sequence of nonempty,
closed, and bounded subsets of Rn and let I =

⋂∞
n=1 In.

I is closed: This is because the intersection of any number of closed
sets is closed

I is bounded: This is because, I ⊆ I1 and I1 is bounded by assump-
tion.

F is nonempty: For each n = 1, 2, . . . , In is nonempty, so let xn be
an element of In.

Consider the sequence (xn). Since for all n, xn ∈ In ⊆ I1, xn ∈ I1 for
all n, and since I1 is bounded (by assumption), then the sequence (xn)
is bounded (in Rn).

Therefore, by the Bolzano-Weierstrass (xn) has a subsequence (xnk
)

that converges to some x ∈ Rn.

Claim: x is in I

Note: Then we would be done because, since x ∈ I, I is nonempty.

To show x ∈ I, we must show that for all n0 ∈ N, x ∈ In0
.
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Let n0 be arbitrary.

Then, for any k ≥ n0, we have nk ≥ n0

Therefore, Ink
⊆ In0

(since sets In are decreasing).

Therefore, for every k ≥ n0 xnk
∈ Ink

(by definition) ⊆ In0
and so

xnk
∈ In0

.

But then this means that all the terms of the sequence (xnk
) are even-

tually in In0

Therefore, since I0 is closed (by assumption) the limit x of (xnk
) is also

in In0
, hence x ∈ In0

.

Hence, since n0 was arbitrary we get x ∈ I, so I is nonempty. ✓ □

Problem 6: STEP 1: Suppose [0, 1] can be written as the disjoint
union of [ak, bk] where k ∈ N.

Let x0 = b1 and assume b1 < 1 (since the union is countably infinite
and the intervals are disjoint).

Then for some 0 < ϵ1 < 1
2 , x0 + ϵ1 ∈ (0, 1), so x0 + ϵ1 lies in some

[ak, bk]. Let x1 = ak > x0.

Then

|x1 − x0| = x1 − x0 = ak − x0 ≤ x0 + ϵ1 − x0 = ϵ1 <
1

2
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Continuing, for some ϵ2 <
1
4 , x1 − ϵ2 ∈ (0, 1) lies in some [al, bl], then

let x2 = bl. So x0 < x1 < x2 and |x1 − x2| < 1
4 .

STEP 3: Now suppose we have found x0, x1, . . . , x2k−1, x2k with

x0 < x2 < · · · < x2k < · · · < x2k−1 < · · · < x1

And |x2k+1 − x2k| < 1
2k

Then for some ϵ2k+1 < 1
2k+1 , x2k + ϵ2k+1 ∈ (0, 1), so x2k + ϵ2k+1 lies

in some [al, bl]. Let x2k+1 = al > x2k and we can choose ϵ2k+1 small
enough so that x2k+1 < x2k−1.

And for some ϵ2k+2 < 1
22k+2 , x2k+2 − ϵ2k+2 ∈ (0, 1) lies in some [ap, bp],

then let x2k+2 = bp. So x2k+2 > x2k and we can choose ϵ2k+2 small
enough with x2k+2 < x2k+1 ✓

STEP 4: Now consider the nested closed intervals [x2n, x2n+1]. By the
Finite Intersection property ∩∞

n=1[x2n, x2n+1] is nonempty, so there is
x ∈ [x2n, x2n+1]. Because |x2n+1 − x2n| < 2−n, one can show that, as in
problem 10.6, that (xn) converges to x.

STEP 5:

Claim: x /∈ [0, 1]

Proof: Suppose x ∈ [0, 1] =
⋃∞

n=1[an, bn], then x ∈ [ap, bp] for some p

If x > 0, then, since the subsequence (x2k) is monotonically increasing
and converges to x, there must be some n with ap < x2n < x. But
by construction, x2k is the right point of a sub-interval, so x2k = bl for
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some l, which contradict the fact that x ∈ [ap, bp] and the intervals are
disjoint. ⇒⇐, so there are no bl between ap and bp.

Hence x = 0 but this contradicts x > x0 ≥ 0. □

Problem 7: Using the definition of totally bounded with r = 1
k (for

k ∈ N), for all k, we can coverE with finitely many ballsB
(
xk1,

1
k

)
, B

(
xk2,

1
k

)
, . . . B

(
xknk

)
.

Let F be the union of the centers
{
xk1, . . . , x

k
nk

}
as k ranges over all the

integers. Then F is countable, being the countable union of finitely
many sets.

Claim: F is dense in E

Let x ∈ E and r > 0, we need to find y ∈ F such that y ∈ B(x, r).
But if r is given, choose k large enough such that 1

k < r. Then,

since the balls B
(
xk1,

1
k

)
, B

(
xk2,

1
k

)
, . . . B

(
xknk

)
cover E, we must have

x ∈ B
(
xkj ,

1
k

)
for some j. But then, by definition, y =: xkj ∈ F (it’s

the center of a ball), but also d(x, y) < 1
k < r, so y ∈ B(x, r) ✓ □

Problem 8:

F bounded: Notice that:

F = {x | sup {|xj| , j = 1, 2, . . . } ≤ 1}
= {x | sup {|xj−0| , j = 1, 2, . . . } ≤ 1}
= {x | d(x,0) ≤ 1}
=B(0, 1)

Hence F is included in the (closed) ball of center 0 = (0, 0, 0, . . . ) and
radius 1, and hence is bounded. ✓
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F closed: Suppose (x(n)) is a sequence in F that converges to x.
Want to show x ∈ F .

But since each x(n) is in F , we have:

sup
{∣∣∣x(n)j

∣∣∣ , j = 1, 2, . . . ,
}
≤ 1

So for all n and all j,
∣∣∣x(n)j

∣∣∣ ≤ 1

But now, letting n go to infinity and using x(n) → x, we get |xj| ≤ 1,
where x = (x1, x2, . . . ) And since this is true for all j, we have:

sup {|xj| , j = 1, 2, . . . } ≤ 1

F not compact:

STEP 1: Suppose, for sake of contradiction, that F is compact.

For each x ∈ F , let

U(x) = B(x, 1) = {y ∈ B | d(y, x) < 1}

STEP 2: For each n ∈ N, let x(n) be defined by:

x
(n)
j =

{
−1 if j = n

1 if j ̸= n

Then for each j,
∣∣∣x(n)j

∣∣∣ = 1 ≤ 1, so sup
{∣∣∣x(n)j

∣∣∣ , j = 1, 2, . . .
}
≤ 1 and

so (x(n)) ∈ F

STEP 3:
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Claim: If x ∈ F , then m ̸= n then x(m) and x(n) cannot both
belong to U(x)

Proof: Suppose x(m) and x(n) both belong to U(x), then by definition
of U(x), we have d(x(m), x) < 1 and (x(m), x) < 1, so

d(x(m), x(n)) ≤ d(x(m), x) + d(x(n), x) < 1 + 1 = 2

That is

sup
{∣∣∣x(m)

j − x
(n)
j

∣∣∣ , j = 1, 2, . . .
}
< 2

So for all j,
∣∣∣x(m)

j − x
(n)
j

∣∣∣ < 2

But if you let j = n, then you get (since m ̸= n)∣∣∣x(m)
n − x(n)n

∣∣∣ = |1− (−1)| = 2 < 2

Which is a contradiction ✓

STEP 4: Define:

U = {U(x) | x ∈ F}

Then U is an open cover of F and therefore has a finite sub-cover
V = {U(x1), . . . , U(xn)}.

Now since x(1) ∈ F , then, since V is a sub-cover, we must have x(1) ∈ V
for some V ∈ V , and WLOG assume V = U(x1), hence x(1) ∈ U(x1).

Similarly x(2) ∈ V for some V ∈ V . However by the above claim, x(2)

cannot be in U(x1) since x(1) is already in U(x1), so x(2) must be in
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some different element of V , so WLOG, assume x(2) ∈ U(x2).

Continuing in this manner, we get that x(k) ∈ U(xk) for k = 1, . . . , n,
but then x(n+1) cannot be in V since it cannot be in any of the U(x1), . . . , U(xn)
since n+ 1 ̸= 1, 2, . . . , n but this contradicts that V covers E ⇒⇐
Problem 9: Consider f : (0, 1) → R defined by

f(x) = tan−1
(
πx− π

2

)
Then, one can check that g(x) = πx− π

2 is continuous, one-to-one, and
onto, and its inverse is continuous and therefore a homeomorphism.

Also since tan :
(
−π

2 ,
π
2

)
→ R is continuous and one-to-one and onto R

(you can show this using the fact that tan(x) → ±∞ near ±π
2 and an

analog of the Intermediate Value Theorem), its inverse tan−1 is con-
tinuous, and therefore a homeomorphism

Hence f(x) is a homeomorphism, being a composition of two homeo-
morphisms, and therefore (0, 1) and R are homeomorphic.

Problem 10:

(a) Since f is continuous, one-to-one, and onto its image, it suffices
to show that f−1 is continuous.

Claim: f is continuous if and only if for each closed set
C, f−1(C) is closed

This follows because if f is continuous and C is closed, then
Cc is open, and therefore f−1(Cc) is open, hence

(
f−1(C)

)c
is

open, so f−1(C) is closed ✓
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Conversely, if f−1(C) is closed whenever C is closed, then if U
is any open set, then U c is closed, so by assumption f−1(U c)
is closed, and therefore

(
f−1(U)

)c
is closed, and so f−1(U) is

open, so f is continuous ✓

Now suppose C is an arbitrary closed subset of K, then since
K is compact, C is a closed subset of a compact set, and hence
compact. Therefore, since C is compact and f is continuous,
f(C) is compact, and hence closed.

Therefore, whenever C is closed, f(C) is closed, and by the

claim below, it follows that
(
f−1

)−1
(C) = f(C) is closed, and

so f−1 is continuous since f was arbitrary

Claim:
(
f−1

)−1
(C) = f(C)

Proof:

x ∈
(
f−1

)−1
(C) ⇔f−1(x) ∈ C

⇔f
(
f−1(x)

)
∈ f(C)

⇔x ∈ f(C)✓ □

(b) Let

(xn) =

(
cos

(
2π − 1

n

)
, sin

(
2π − 1

n

))
Then (xn) converges to (1, 0), but f−1(xn) = 2π − 1

n converges
to 2π ̸= f−1((1, 0)) = 0.
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Hence f−1 is not continuous.


