
HOMEWORK 3 − SOLUTIONS

Problem 1: Suppose F is compact and E ⊆ F is closed.

Let U be an open cover of E.

Then, since E is closed, Ec is open.

Now consider the cover

U ′ =: U ∪ {Ec}

Claim: U ′ is an open cover of F

Proof: If x ∈ F because either x ∈ F , in which case x ∈ E, so there
is U ∈ U ⊆ U ′ with x ∈ U . Or x /∈ E, in which case x ∈ Ec which is
an element of U ′ ✓

But since F is compact, there is a finite sub-cover V ′ of U ′.

Since E ⊆ F , V ′ covers E.

But then V =: V ′\ {Ec}. Then V is a subcover of U (since Ec /∈ U)

Claim: V covers E

Proof: Let x ∈ E, then since V ′ covers E, there must be V ∈ V ′ with
x ∈ V . But V ̸= Ec because then we would get x ∈ Ec which is a
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contradiction. Hence V ∈ V ′\ {Ec} = V and x ∈ V ✓

Therefore we found a finite sub-cover V of U that covers E, and so E
is compact □

Problem 2:

STEP 1: Fix x0 ∈ Rk and let ϵ > 0 be given. Let Kn = B(x0,
1
n),

notice that the Kn are decreasing, and therefore, by (2), we have

∞⋂
n=1

f (Kn) = f

( ∞⋂
n=1

Kn

)
= f ({x0}) = {f(x0)}

STEP 2: Let B = B(f(x0), ϵ) = (f(x0)− ϵ, f(x0) + ϵ).

Then, first of all

⋂
(f(Kn)\B) =

(⋂
f(Kn)

)
∩Bc = {f(x0)} \B = ∅

(because f(x0) is in B)

On the other hand, since Kn is compact, by (1), f(Kn) is compact and
hence closed, and so f(Kn)\B = f(Kn) ∩ Bc is closed. And since the
Kn are decreasing, the f(Kn) are decreasing, and so is f(Kn)\B.

Now if for all n, (f(Kn)\B) ̸= ∅, then by the finite intersection prop-
erty we would have

⋂
(f(Kn)\B) ̸= ∅, which contradicts the above.

Therefore, for some N , f(KN)\B = f(Kn) ∩Bc = ∅.
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STEP 3: But this implies that f(KN) ⊆ B, and therefore, if |x− x0| <
1
N ≤ 1

N , then x ∈ B(x0,
1
N ) = KN , and so f(x) ∈ f(KN) ⊆ B =

B(f(x0), ϵ), meaning |f(x)− f(x0)| < ϵ. In other words

|x− x0| <
1

N
⇒ |f(x)− f(x0)| < ϵ

STEP 4: Now given ϵ > 0, let δ < 1
N as above, then if |x− x0| < δ <

1
N , then |f(x)− f(x0)| < ϵ, and therefore f is continuous at x0, and
hence is continuous. □

Problem 3: First fix any 0 < x ≤ 1. Then fn(x) = 0 for all large
enough n (n ≥ 2/x for example). Also fn(0) = 0 for all n. Therefore

lim
n→∞

fn(x) = 0 for all x ∈ [0, 1].

Note that fn does not converge to 0 uniformly on [0, 1].

Problem 4: Note that from

(
√
n|x| − 1)2 ≥ 0

it follows that
|x|

1 + nx2
≤ 1

2
√
n

for all x ∈ R and n ∈ N. From the inequality above it follows that fn
converges to f(x) = 0 uniformly on R as n → ∞.

For the derivatives,

f ′
n(x) =

1 + nx2 − x · 2nx
(1 + nx2)2

=
1− nx2

(1 + nx2)2
.

Clearly, for x ̸= 0 we have

f ′
n(x) → 0 = f ′(x) as n → ∞.
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On the other hand, for x = 0 and all n ∈ N we have

f ′
n(0) = 1.

Problem 5: (⇒) Let ϵ > 0 be given. Then since fn → f in C[a, b],
there is N such that if n > N then d(fn, f) < ϵ, that is

sup {|fn(x)− f(x)| , x ∈ [a, b]} < ϵ

(But if a sup is < ϵ, then all its values are < ϵ)

With the same N , n > N then for all x, we have |fn(x)− f(x)| < ϵ,
so fn → f uniformly.

(⇐) Similar □

Problem 6: For a function h : E → R denote

∥h∥ := sup
x∈E

|h(x)|.

Note that

hn → h uniformly on E ⇐⇒ ∥hn − h∥ → 0.

Uniform convergence fn + gn → f + g on E follows from

∥fn + gn − f − g∥ ≤ ∥fn − f∥+ ∥gn − g∥.

To show that fngn → fg uniformly on E

∥fngn − fg∥ = ∥fngn − fng + fng − fg∥ ≤
∥fngn − fng∥+ ∥fng − fg∥ ≤ ∥fn∥∥gn − g∥+ ∥g∥∥fn − f∥.
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Claim: Suppose hn : E → R is a sequence of bounded functions
such that (hn) converges uniformly on E to some function h. Then
there exists a number M that does not depend on x or n such
that

|hn(x)| ≤ M and |h(x)| ≤ M

for all x ∈ E, n ∈ N.

Indeed, from the definition of uniform convergence with ε = 1 there
exists N ∈ N such that

|hn(x)− h(x)| ≤ 1 for all n ≥ N and x ∈ E.

From the above it follows that

|hn(x)| ≤ |hN(x)|+ 2 for all n ≥ N and x ∈ E.

We can now take

M = max{∥h1∥, . . . , ∥hN−1∥, ∥hN∥+ 2}

which is a finite number.✓
From the claim above it follows that fn and gn are uniformly

bounded on E. That is, there exists a number M such that

∥fn∥, ∥f∥, ∥gn∥, ∥g∥ ≤ M

for all n. It therefore holds that

∥fngn− fg∥ ≤ ∥fn∥∥gn− g∥+ ∥g∥∥fn− f∥ ≤ M∥gn− g∥+M∥fn− f∥

for all n. This implies the uniform convergence fngn → fg.
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Problem 7: Choose any distinct points x and y in R. Then by the
mean value theorem, there exists a point c between x and y such that

f(x)− f(y)

x− y
= f ′(c).

Taking absolute values and rearranging, this becomes

|f(x)− f(y)| = |f ′(c)∥x− y| ≤ L|x− y|,

which is the desired result.

Problem 8: Let ϵ > 0, and choose δ = ϵ/2L. Then for all x, y ∈ K
with |x− y| < δ and for all f ∈ A,

|f(x)− f(y)| ≤ L|x− y| ≤ Lδ =
ϵ

2
< ϵ.


