HOMEWORK 3 - SOLUTIONS

Problem 1: Suppose F is compact and $E \subseteq F$ is closed.
Let \mathcal{U} be an open cover of E.
Then, since E is closed, E^{c} is open.
Now consider the cover

$$
\mathcal{U}^{\prime}=: \mathcal{U} \cup\left\{E^{c}\right\}
$$

Claim: \mathcal{U}^{\prime} is an open cover of F
Proof: If $x \in F$ because either $x \in F$, in which case $x \in E$, so there is $U \in \mathcal{U} \subseteq \mathcal{U}^{\prime}$ with $x \in U$. Or $x \notin E$, in which case $x \in E^{c}$ which is an element of $\mathcal{U}^{\prime} \checkmark$

But since F is compact, there is a finite sub-cover \mathcal{V}^{\prime} of \mathcal{U}^{\prime}.
Since $E \subseteq F, \mathcal{V}^{\prime}$ covers E.
But then $\mathcal{V}=: \mathcal{V}^{\prime} \backslash\left\{E^{c}\right\}$. Then \mathcal{V} is a subcover of \mathcal{U} (since $E^{c} \notin \mathcal{U}$)

Claim: \mathcal{V} covers E
Proof: Let $x \in E$, then since \mathcal{V}^{\prime} covers E, there must be $V \in \mathcal{V}^{\prime}$ with $x \in V$. But $V \neq E^{c}$ because then we would get $x \in E^{c}$ which is a
contradiction. Hence $V \in \mathcal{V}^{\prime} \backslash\left\{E^{c}\right\}=\mathcal{V}$ and $x \in V \checkmark$
Therefore we found a finite sub-cover \mathcal{V} of \mathcal{U} that covers E, and so E is compact

Problem 2:

STEP 1: Fix $x_{0} \in \mathbb{R}^{k}$ and let $\epsilon>0$ be given. Let $K_{n}=\overline{B\left(x_{0}, \frac{1}{n}\right)}$, notice that the K_{n} are decreasing, and therefore, by (2), we have

$$
\bigcap_{n=1}^{\infty} f\left(K_{n}\right)=f\left(\bigcap_{n=1}^{\infty} K_{n}\right)=f\left(\left\{x_{0}\right\}\right)=\left\{f\left(x_{0}\right)\right\}
$$

STEP 2: Let $B=B\left(f\left(x_{0}\right), \epsilon\right)=\left(f\left(x_{0}\right)-\epsilon, f\left(x_{0}\right)+\epsilon\right)$.
Then, first of all

$$
\bigcap\left(f\left(K_{n}\right) \backslash B\right)=\left(\bigcap f\left(K_{n}\right)\right) \cap B^{c}=\left\{f\left(x_{0}\right)\right\} \backslash B=\emptyset
$$

(because $f\left(x_{0}\right)$ is in B)
On the other hand, since K_{n} is compact, by (1), $f\left(K_{n}\right)$ is compact and hence closed, and so $f\left(K_{n}\right) \backslash B=f\left(K_{n}\right) \cap B^{c}$ is closed. And since the K_{n} are decreasing, the $f\left(K_{n}\right)$ are decreasing, and so is $f\left(K_{n}\right) \backslash B$.

Now if for all $n,\left(f\left(K_{n}\right) \backslash B\right) \neq \emptyset$, then by the finite intersection property we would have $\bigcap\left(f\left(K_{n}\right) \backslash B\right) \neq \emptyset$, which contradicts the above.

Therefore, for some $N, f\left(K_{N}\right) \backslash B=f\left(K_{n}\right) \cap B^{c}=\emptyset$.

STEP 3: But this implies that $f\left(K_{N}\right) \subseteq B$, and therefore, if $\left|x-x_{0}\right|<$ $\frac{1}{N} \leq \frac{1}{N}$, then $x \in \overline{B\left(x_{0}, \frac{1}{N}\right)}=K_{N}$, and so $f(x) \in f\left(K_{N}\right) \subseteq B=$ $B\left(f\left(x_{0}\right), \epsilon\right)$, meaning $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$. In other words

$$
\left|x-x_{0}\right|<\frac{1}{N} \Rightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon
$$

STEP 4: Now given $\epsilon>0$, let $\delta<\frac{1}{N}$ as above, then if $\left|x-x_{0}\right|<\delta<$ $\frac{1}{N}$, then $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$, and therefore f is continuous at x_{0}, and hence is continuous.

Problem 3: First fix any $0<x \leq 1$. Then $f_{n}(x)=0$ for all large enough $n\left(n \geq 2 / x\right.$ for example). Also $f_{n}(0)=0$ for all n. Therefore

$$
\lim _{n \rightarrow \infty} f_{n}(x)=0 \quad \text { for all } x \in[0,1]
$$

Note that f_{n} does not converge to 0 uniformly on $[0,1]$.
Problem 4: Note that from

$$
(\sqrt{n}|x|-1)^{2} \geq 0
$$

it follows that

$$
\frac{|x|}{1+n x^{2}} \leq \frac{1}{2 \sqrt{n}}
$$

for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$. From the inequality above it follows that f_{n} converges to $f(x)=0$ uniformly on \mathbb{R} as $n \rightarrow \infty$.

For the derivatives,

$$
f_{n}^{\prime}(x)=\frac{1+n x^{2}-x \cdot 2 n x}{\left(1+n x^{2}\right)^{2}}=\frac{1-n x^{2}}{\left(1+n x^{2}\right)^{2}} .
$$

Clearly, for $x \neq 0$ we have

$$
f_{n}^{\prime}(x) \rightarrow 0=f^{\prime}(x) \quad \text { as } n \rightarrow \infty
$$

On the other hand, for $x=0$ and all $n \in \mathbb{N}$ we have

$$
f_{n}^{\prime}(0)=1
$$

Problem 5: (\Rightarrow) Let $\epsilon>0$ be given. Then since $f_{n} \rightarrow f$ in $C[a, b]$, there is N such that if $n>N$ then $d\left(f_{n}, f\right)<\epsilon$, that is

$$
\sup \left\{\left|f_{n}(x)-f(x)\right|, x \in[a, b]\right\}<\epsilon
$$

(But if a sup is $<\epsilon$, then all its values are $<\epsilon$)
With the same $N, n>N$ then for all x, we have $\left|f_{n}(x)-f(x)\right|<\epsilon$, so $f_{n} \rightarrow f$ uniformly.
(\Leftarrow) Similar
Problem 6: For a function $h: E \rightarrow \mathbb{R}$ denote

$$
\|h\|:=\sup _{x \in E}|h(x)| .
$$

Note that

$$
h_{n} \rightarrow h \quad \text { uniformly on } E \Longleftrightarrow\left\|h_{n}-h\right\| \rightarrow 0
$$

Uniform convergence $f_{n}+g_{n} \rightarrow f+g$ on E follows from

$$
\left\|f_{n}+g_{n}-f-g\right\| \leq\left\|f_{n}-f\right\|+\left\|g_{n}-g\right\| .
$$

To show that $f_{n} g_{n} \rightarrow f g$ uniformly on E

$$
\begin{gathered}
\left\|f_{n} g_{n}-f g\right\|=\left\|f_{n} g_{n}-f_{n} g+f_{n} g-f g\right\| \leq \\
\left\|f_{n} g_{n}-f_{n} g\right\|+\left\|f_{n} g-f g\right\| \leq\left\|f_{n}\right\|\left\|g_{n}-g\right\|+\|g\|\left\|f_{n}-f\right\| .
\end{gathered}
$$

Claim: Suppose $h_{n}: E \rightarrow \mathbb{R}$ is a sequence of bounded functions such that $\left(h_{n}\right)$ converges uniformly on E to some function h. Then there exists a number M that does not depend on x or n such that

$$
\left|h_{n}(x)\right| \leq M \quad \text { and } \quad|h(x)| \leq M
$$

for all $x \in E, n \in \mathbb{N}$.
Indeed, from the definition of uniform convergence with $\varepsilon=1$ there exists $N \in \mathbb{N}$ such that

$$
\left|h_{n}(x)-h(x)\right| \leq 1 \quad \text { for all } n \geq N \text { and } x \in E
$$

From the above it follows that

$$
\left|h_{n}(x)\right| \leq\left|h_{N}(x)\right|+2 \quad \text { for all } n \geq N \text { and } x \in E .
$$

We can now take

$$
M=\max \left\{\left\|h_{1}\right\|, \ldots,\left\|h_{N-1}\right\|,\left\|h_{N}\right\|+2\right\}
$$

which is a finite number. \checkmark
From the claim above it follows that f_{n} and g_{n} are uniformly bounded on E. That is, there exists a number M such that

$$
\left\|f_{n}\right\|,\|f\|,\left\|g_{n}\right\|,\|g\| \leq M
$$

for all n. It therefore holds that

$$
\left\|f_{n} g_{n}-f g\right\| \leq\left\|f_{n}\right\|\left\|g_{n}-g\right\|+\|g\|\left\|f_{n}-f\right\| \leq M\left\|g_{n}-g\right\|+M\left\|f_{n}-f\right\|
$$

for all n. This implies the uniform convergence $f_{n} g_{n} \rightarrow f g$.

Problem 7: Choose any distinct points x and y in \mathbb{R}. Then by the mean value theorem, there exists a point c between x and y such that

$$
\frac{f(x)-f(y)}{x-y}=f^{\prime}(c) .
$$

Taking absolute values and rearranging, this becomes

$$
|f(x)-f(y)|=\left|f^{\prime}(c) \| x-y\right| \leq L|x-y|,
$$

which is the desired result.
Problem 8: Let $\epsilon>0$, and choose $\delta=\epsilon / 2 L$. Then for all $x, y \in K$ with $|x-y|<\delta$ and for all $f \in A$,

$$
|f(x)-f(y)| \leq L|x-y| \leq L \delta=\frac{\epsilon}{2}<\epsilon
$$

