HOMEWORK 3 — SOLUTIONS

Problem 1: Suppose F' is compact and E C F' is closed.
Let U be an open cover of F.
Then, since E is closed, E° is open.

Now consider the cover

U = UU{EY}

Claim: U/’ is an open cover of F

Proof: If z € F because either x € F', in which case x € E, so there
isU el CU withz € U. Or x ¢ E, in which case x € E° which is
an element of U’ v/

But since F is compact, there is a finite sub-cover V' of U'.

Since £ C F', V' covers E.

But then V =: V'\ {E°}. Then V is a subcover of U (since E° ¢ U)

[ Claim: V covers F ]

Proof: Let x € F, then since V' covers E, there must be V € V' with
x € V. But V # E° because then we would get x € E° which is a

1



2 HOMEWORK 3 — SOLUTIONS

contradiction. Hence V e V\{E‘} =V andz eV v

Therefore we found a finite sub-cover V of U that covers E, and so E
1s compact O

Problem 2:

STEP 1: Fix 2y € R* and let € > 0 be given. Let K,, = B(xo,%),
notice that the K, are decreasing, and therefore, by (2), we have

N /(K =1 (ﬂ K) = f ({x}) = {f(x0)}

STEP 2: Let B = B(f(xg),€) = (f(x0) — €, f(zg) + €).

Then, first of all

N ENB) = (N F)) 0B = {f ()} \B =0
(because f(x) is in B)
On the other hand, since K, is compact, by (1), f(K,) is compact and
hence closed, and so f(K,)\B = f(K,) N B¢ is closed. And since the
K, are decreasing, the f(K,) are decreasing, and so is f(K,)\B.

Now if for all n, (f(K,)\B) # 0, then by the finite intersection prop-
erty we would have () (f(K,)\B) # (), which contradicts the above.

Therefore, for some N, f(Ky)\B = f(K,) N B ={.
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STEP 3: But this implies that f(Ky) C B, and therefore, if |x — x| <
+ < =+, then € B(zy,+) = Ky, and so f(z) € f(Ky) C B =
B(f(xg),€), meaning |f(x) — f(zo)| < €. In other words

o 0] < 5 = 1F(@) ~ fao)] < ¢

STEP 4: Now given € > 0, let § < % as above, then if |z — 2| < § <
% then |f(z) — f(zo)| < €, and therefore f is continuous at zg, and
hence is continuous. [

Problem 3: First fix any 0 < x < 1. Then f,(x) = 0 for all large
enough n (n > 2/z for example). Also f,(0) = 0 for all n. Therefore

lim f,(z) =0  forall x € [0,1].

n—oo

Note that f,, does not converge to 0 uniformly on [0, 1].

Problem 4: Note that from

(Vnlz| =1)* > 0
it follows that
o _ 1
1+ nz? = 2y/n
for all x € R and n € N. From the inequality above it follows that f,

converges to f(x) = 0 uniformly on R as n — oo.
For the derivatives,

_1+nx2—x-2nx_ 1 — nz?

falw) = (14 nz?)? (1 +na?)?

Clearly, for « # 0 we have

() —=0=f(x) asn— .
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On the other hand, for x = 0 and all n € N we have

fu(0) =1.

Problem 5: (=) Let € > 0 be given. Then since f, — f in Cla,b],
there is N such that if n > N then d(f,, f) < ¢, that is

sup {[fu(2) = f(@)], x € [a,b]} < e
(But if a sup is < ¢, then all its values are < €)

With the same N, n > N then for all z, we have |f,(z) — f(z)| < e,
so f, — f uniformly.

(<) Similar O
Problem 6: For a function h : E — R denote

[2]] == sup |h(z)].

zelk

Note that
hn, — h uniformly on £ <= ||h, — h|| = 0.
Uniform convergence f,, + g, — f + g on E follows from

[fo 4 g0 = F =gl < \fu = Sl + llgn — 9l

To show that f,g, — fg uniformly on E

||fngn o ng - angn _ fng+fng o ng S
[fagn = Fagll + g = Foll < [fullllgn = gll + gl fu = F1I-
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Claim: Suppose h, : E — R is a sequence of bounded functions
such that (h,) converges uniformly on F to some function h. Then
there exists a number M that does not depend on x or n such
that

|ho(z)] < M and |h(z)| < M

for all z € E,n € N.

Indeed, from the definition of uniform convergence with € = 1 there
exists N € N such that

\ho(z) — h(x)| <1 forallm > N and x € E.
From the above it follows that
\h ()] < |hn(z)] + 2 foralln > N and z € F.
We can now take
M = max{ ], .., v |, o]l + 2}
which is a finite number.v’

From the claim above it follows that f, and g, are uniformly
bounded on E. That is, there exists a number M such that

LFall A1 Nlgnll, gl < M

for all n. It therefore holds that

[ frgn = Fall < W fulllgn = gl + llgllllfo = FII < Mllgn — gl + M| fn = [l

for all n. This implies the uniform convergence f,g, — fg.
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Problem 7: Choose any distinct points x and y in R. Then by the
mean value theorem, there exists a point ¢ between x and y such that

f(@) = fy)

LY - o

Taking absolute values and rearranging, this becomes

[f (@) = fW)l =1 (Ol =yl < Lz —yl,

which is the desired result.

Problem 8: Let € > 0, and choose § = ¢/2L. Then for all x,y € K
with |z —y| < § and for all f € A,

1f(z) = f(y)| < Llz —y| < L§ = g <e



