ANALYSIS - HOMEWORK 3

Problem 1: Use covering compactness to show that a closed subset of a compact set is compact.

Problem 2: (more challenging) Suppose that $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ satisfies the following two conditions:
(1) For each compact set $K, f(K)$ is compact
(2) For any nested decreasing sequence of compact sets $K_{1} \supseteq K_{2} \supseteq$ $K_{3} \supseteq \ldots$, we have

$$
f\left(\bigcap K_{n}\right)=\bigcap f\left(K_{n}\right)
$$

Show that f is continuous
Problem 3: Consider the following sequence of functions f_{n} on $[0,1]$, sometimes called the growing steeple

$$
f_{n}(x)= \begin{cases}n x & \text { if } 0 \leq x \leq \frac{1}{n} \\ 2-n x & \text { if } \frac{1}{n} \leq x \leq \frac{2}{n} \\ 0 & \text { if } \frac{2}{n} \leq x \leq 1\end{cases}
$$

Show that f_{n} converges pointwise to 0 , but not uniformly to 0 .
Problem 4: For $n=1,2,3, \cdots, x$ real, put

$$
f_{n}(x)=\frac{x}{1+n x^{2}}
$$

Show that $\left\{f_{n}\right\}$ converges uniformly to a function f, and that the equation

$$
f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)
$$

Is true for $x \neq 0$ but false if $x=0$
Problem 5: Show that $f_{n} \rightarrow f$ in $C[a, b]$ if and only if $f_{n} \rightarrow f$ uniformly

Problem 6: Let $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ be sequences of bounded functions such that $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ uniformly on a set E. Show that $f_{n}+g_{n} \rightarrow f+g$ and $f_{n} g_{n} \rightarrow f g$ uniformly on E.

Definition:

A function $f:(X, d) \rightarrow \mathbb{R}$ is Lipschitz if there exists a positive constant $L>0$ such that for all $x, y \in X$,

$$
|f(x)-f(y)| \leq L d(x, y)
$$

Problem 7: Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuously differentiable, and $\left|f^{\prime}(x)\right| \leq L$. Then f is Lipschitz continuous

Problem 8: Show that if $\left\{f_{n}\right\}$ is a family of Lipschitz functions with the same Lipschitz constant L, then $\left\{f_{n}\right\}$ is equicontinuous

