HOMEWORK 4 — SOLUTIONS

Problem 1: Write f,(z) = gu(x) + h,(x) where g,(x) = cos(x + n)

and h,(x) =In(1+ 53175%)) It suffices to show that {g,} and {h,} are

each equicontinuous on [0, 27].

Claim: {g,} is equicontinuous on [0, 27|

Note |¢/(z)] = |sin(z +n)| < 1. Thus each g, is Lipschitz continuous
with Lipschitz constant 1, so {g,} is equicontinuous.

Claim: {h,} is equicontinuous on [0, 27].

It suffices to show h, converges uniformly on [0,27]. We use the
fact that if f is uniformly continuous and ¢, — ¢ uniformly, then
fog, — fog uniformly.

To see this fact, fix € > 0. Since f is uniformly continuous, we can
choose § so |f(x) — f(y)| when |r —y| < 6. Since g, — ¢ uni-
formly, we can choose N so |g,(x) — g(x)| < 0 when n > N. Then
|f(g(x)) — f(gn(x))| < € when n > N, so f o g, — fog uniformly.

sin(nx)

Now note |sin(nz)| < 1,s0 1+ 73 — 1 uniformly on 0,27] as n —

0o. Note 1+ S\i%%) always lies within the compact set [1 — \/%, 1+ \/%]

(again since |sin(nz)| < 1), and In is continuous hence uniformly con-
tinuous on compact sets. Thus by the above fact h,, — 0 uniformly on

[0, 27].
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We conclude {h,} is equicontinuous on [0, 27].

Problem 2:

Claim: If {f,} is equicontinuous on [0, 1] then f is constant on [0, 00).
Take any € > 0 and any z,y > 0. We will show |f(z) — f(y)] < e.

By equicontinuity, there exists ¢ such that if a, b € [0, 1] and |a—b| < 0,
then |f,(a) — fn(D)| < € for all n.

Choose n large enough that £ <1, £ <1, and |£ — £] < §. Then

s s01=]1n ) -4 (2)] <
) =

Since € is arbitrary, we conclude f(z) = f(y), and thus f is constant.

Claim: Furthermore, if f is constant on [0, c0) then {f,} is equicon-
tinuous on [0, 1].

Given any € > 0, take § = 3. Then for all z,y € [0, 1] with [z —y| < 3
we have for all n € N that nz > 0, ny > 0, and thus f(nz) = f(ny).
Thus |f,(x) — fu(y)] =0 < ¢, so {f,} is equicontinuous on [0, 1].

Problem 3: By Arzela-Ascoli we only need to show that {F,} is
bounded and equicontinuous.

Claim: {F,} is bounded.

Because {f,} is uniformly bounded, say |f,(x)| < M, we have

=/ e dt' [ ol < / fult)ldt < Mla ]
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So {F,} is bounded.
Claim: {F},} is equicontinuous.

Given € > 0 take 0 = 57. Consider any z > y with |z —y| < J. Then

| Fo(2)—Fa(y)| =

/x fu(t)dt — /y fn(t)dt‘ < /x |fu(t)|dt < M|z—y| < M =e.
a a Yy

Thus {F,} is equicontinuous.

Problem 4: Let x,y € R with z < y. Split [z,y] into n intervals of
length =2 the endpoints of these intervals are z; = z + £(y — ) for

k €{0,---,n}. Then we have for some constant C
n—1
[f(@) = F)l < ) 1 (wrea) = fla)]

k=0

n—1
<O D |Ther — ]

k=0
n—1

As n — oo, we have Cly — x|*n'~® — 0, so | f(x) — f(y)| = 0. Thus f
1s constant.

Problem 5:

First ODE:



Second ODE:
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du
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Problem 6:

Take f(x) =1In(e” 4+ 1). Then

e.’]?

< 1.
et + 1

(@) =

But if f has a fixed point x then x = In(e” + 1), so e* = e* + 1; this is
impossible, so f has no fixed point.

Problem 7:

STEP 1: Let 2o € X and define z,, = f"(z¢) (f applied n times)
Notice d(z1,x2) = d(f(xo), f(x1)) < kd(xg,x1) and

d(xo, x3) = d(f(21), f(22)) < kd(z1,79) < kkd(z0, 1) = k*d(0, 1)
And more generally you can show that

d(p, ny1) < K"d(z0, 1)

STEP 2: Claim: (z,) is Cauchy

Why? Let € > 0 be given and N be TBA, then if m,n > N (WLOG
assume n > m), then
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(T, Tn) <d(Tp, Tma1) + d(Tmat1, Tao) + -+ + d(xn—1, 7))
<k"d(xg, 1) + km+1d(.%‘0, r1) 4 -+ K (2, 20) (By STEP 1)
< (K™ + K" 4+ B d @, o)
=k" (1+k+---+ k") d(xg, 21)
<k™ (L4 k+k + ) d(zo, 1)

1
kN
§ﬁd(:€0,x1) Since m > N and k < 1
But since £ < 1 we have lim,,_,, k" = 0, so we can choose N large
enough so that %d(azo, r1) < €, which in turn implies d(x,,, z,) < € v/

STEP 3: Since (x,) is Cauchy and X is complete, (x,) converges to
some p

Claim: p is a fixed point of f.

This follows because

Ln+1 :f(xn)
lim z,41 = lim f(x,)
n—oo

n—oo
p=f (hm xn) (continuity)
p=f(p)v
STEP 4: Uniqueness: Suppose there are two fixed points p # g,

then

d(p,q) = d(f(p), f(q)) < kd(p,q) < d(p,q) =<+



