
HOMEWORK 4 − SOLUTIONS

Problem 1: Write fn(x) = gn(x) + hn(x) where gn(x) = cos(x + n)

and hn(x) = ln(1 + sin(nx)√
n+2

). It suffices to show that {gn} and {hn} are

each equicontinuous on [0, 2π].

Claim: {gn} is equicontinuous on [0, 2π]

Note |g′n(x)| = | sin(x+ n)| ≤ 1. Thus each gn is Lipschitz continuous
with Lipschitz constant 1, so {gn} is equicontinuous.

Claim: {hn} is equicontinuous on [0, 2π].

It suffices to show hn converges uniformly on [0, 2π]. We use the
fact that if f is uniformly continuous and gn → g uniformly, then
f ◦ gn → f ◦ g uniformly.

To see this fact, fix ϵ > 0. Since f is uniformly continuous, we can
choose δ so |f(x) − f(y)| when |x − y| < δ. Since gn → g uni-
formly, we can choose N so |gn(x) − g(x)| < δ when n > N . Then
|f(g(x))− f(gn(x))| < ϵ when n > N , so f ◦ gn → f ◦ g uniformly.

Now note | sin(nx)| ≤ 1, so 1 + sin(nx)√
n+2

→ 1 uniformly on [0, 2π] as n →
∞. Note 1 + sin(nx)√

n+2
always lies within the compact set [1− 1√

2
, 1 + 1√

2
]

(again since | sin(nx)| ≤ 1), and ln is continuous hence uniformly con-
tinuous on compact sets. Thus by the above fact hn → 0 uniformly on
[0, 2π].
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We conclude {hn} is equicontinuous on [0, 2π].

Problem 2:

Claim: If {fn} is equicontinuous on [0, 1] then f is constant on [0,∞).

Take any ϵ > 0 and any x, y ≥ 0. We will show |f(x)− f(y)| < ϵ.

By equicontinuity, there exists δ such that if a, b ∈ [0, 1] and |a−b| < δ,
then |fn(a)− fn(b)| < ϵ for all n.

Choose n large enough that x
n ≤ 1, y

n ≤ 1, and |xn − y
n| < δ. Then

|f(x)− f(y)| =
∣∣∣fn (x

n

)
− fn

(y
n

)∣∣∣ < ϵ

Since ϵ is arbitrary, we conclude f(x) = f(y), and thus f is constant.

Claim: Furthermore, if f is constant on [0,∞) then {fn} is equicon-
tinuous on [0, 1].

Given any ϵ > 0, take δ = 1
2 . Then for all x, y ∈ [0, 1] with |x− y| < 1

2 ,
we have for all n ∈ N that nx ≥ 0, ny ≥ 0, and thus f(nx) = f(ny).
Thus |fn(x)− fn(y)| = 0 < ϵ, so {fn} is equicontinuous on [0, 1].

Problem 3: By Arzelà-Ascoli we only need to show that {Fn} is
bounded and equicontinuous.

Claim: {Fn} is bounded.

Because {fn} is uniformly bounded, say |fn(x)| < M , we have

|Fn(x)| =
∣∣∣∣∫ x

a

fn(t)dt

∣∣∣∣ ≤ ∫ x

a

|fn(t)|dt ≤
∫ b

a

|fn(t)|dt ≤ M |a− b|.
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So {Fn} is bounded.

Claim: {Fn} is equicontinuous.

Given ϵ > 0 take δ = ϵ
M . Consider any x > y with |x− y| < δ. Then

|Fn(x)−Fn(y)| =
∣∣∣∣∫ x

a

fn(t)dt−
∫ y

a

fn(t)dt

∣∣∣∣ ≤ ∫ x

y

|fn(t)|dt ≤ M |x−y| < Mδ = ϵ.

Thus {Fn} is equicontinuous.

Problem 4: Let x, y ∈ R with x < y. Split [x, y] into n intervals of
length y−x

n ; the endpoints of these intervals are xk = x + k
n(y − x) for

k ∈ {0, · · · , n}. Then we have for some constant C

|f(x)− f(y)| ≤
n−1∑
k=0

|f(xk+1)− f(xk)|

≤ C

n−1∑
k=0

|xk+1 − xk|α

≤ C

n−1∑
k=0

(
y − x

n

)α

= C|y − x|αn1−α.

As n → ∞, we have C|y − x|αn1−α → 0, so |f(x)− f(y)| = 0. Thus f
is constant.

Problem 5:

First ODE:
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du

dt
=u2

du

u2
=dt∫

du

u2
=

∫
dt

−1

u
=t+ C

u =− 1

t+ C

u(0) = 1 ⇒ − 1

0 + C
= 1 ⇒ − 1

C
= 1 ⇒ C = −1

u = −
(

1

t− 1

)
=

1

1− t

Second ODE:

du

dt
=
√
u

du√
u
=dt∫

du√
u
=

∫
dt

2
√
u =t+ C

√
u =

t+ C

2

u =

(
t+ C

2

)2
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u(0) =

(
C

2

)2

=
C2

4
= 0 ⇒ C = 0

u =

(
t

2

)2

=
t2

4

Problem 6:

Take f(x) = ln(ex + 1). Then

|f ′(x)| =
∣∣∣∣ ex

ex + 1

∣∣∣∣ < 1.

But if f has a fixed point x then x = ln(ex + 1), so ex = ex + 1; this is
impossible, so f has no fixed point.

Problem 7:

STEP 1: Let x0 ∈ X and define xn = fn(x0) (f applied n times)

Notice d(x1, x2) = d(f(x0), f(x1)) ≤ kd(x0, x1) and

d(x2, x3) = d(f(x1), f(x2)) ≤ kd(x1, x2) ≤ kkd(x0, x1) = k2d(x0, x1)

And more generally you can show that

d(xn, xn+1) ≤ knd(x0, x1)

STEP 2: Claim: (xn) is Cauchy

Why? Let ϵ > 0 be given and N be TBA, then if m,n > N (WLOG
assume n ≥ m), then
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d(xm, xn) ≤d(xm, xm+1) + d(xm+1, xm+2) + · · ·+ d(xn−1, xn)

≤kmd(x0, x1) + km+1d(x0, x1) + · · ·+ kn−1d(x1, x0) (By STEP 1)

≤
(
km + km+1 + · · ·+ kn−1

)
d(x1, x0)

=km
(
1 + k + · · ·+ kn−m−1

)
d(x0, x1)

≤km
(
1 + k + k2 + · · ·

)
d(x0, x1)

=km
(

1

1− k

)
d(x0, x1)

≤ kN

1− k
d(x0, x1) Since m > N and k < 1

But since k < 1 we have limn→∞ kn = 0, so we can choose N large
enough so that kN

1−kd(x0, x1) < ϵ, which in turn implies d(xm, xn) < ϵ

STEP 3: Since (xn) is Cauchy and X is complete, (xn) converges to
some p

Claim: p is a fixed point of f .

This follows because

xn+1 =f(xn)

lim
n→∞

xn+1 = lim
n→∞

f(xn)

p =f
(
lim
n→∞

xn

)
(continuity)

p =f(p)✓

STEP 4: Uniqueness: Suppose there are two fixed points p ̸= q,
then

d(p, q) = d(f(p), f(q)) ≤ kd(p, q) < d(p, q) ⇒⇐


