HOMEWORK $4-$ SOLUTIONS

Problem 1: Write $f_{n}(x)=g_{n}(x)+h_{n}(x)$ where $g_{n}(x)=\cos (x+n)$ and $h_{n}(x)=\ln \left(1+\frac{\sin (n x)}{\sqrt{n+2}}\right)$. It suffices to show that $\left\{g_{n}\right\}$ and $\left\{h_{n}\right\}$ are each equicontinuous on $[0,2 \pi]$.

Claim: $\left\{g_{n}\right\}$ is equicontinuous on $[0,2 \pi]$
Note $\left|g_{n}^{\prime}(x)\right|=|\sin (x+n)| \leq 1$. Thus each g_{n} is Lipschitz continuous with Lipschitz constant 1 , so $\left\{g_{n}\right\}$ is equicontinuous.

Claim: $\left\{h_{n}\right\}$ is equicontinuous on $[0,2 \pi]$.
It suffices to show h_{n} converges uniformly on $[0,2 \pi]$. We use the fact that if f is uniformly continuous and $g_{n} \rightarrow g$ uniformly, then $f \circ g_{n} \rightarrow f \circ g$ uniformly.

To see this fact, fix $\epsilon>0$. Since f is uniformly continuous, we can choose δ so $|f(x)-f(y)|$ when $|x-y|<\delta$. Since $g_{n} \rightarrow g$ uniformly, we can choose N so $\left|g_{n}(x)-g(x)\right|<\delta$ when $n>N$. Then $\left|f(g(x))-f\left(g_{n}(x)\right)\right|<\epsilon$ when $n>N$, so $f \circ g_{n} \rightarrow f \circ g$ uniformly.

Now note $|\sin (n x)| \leq 1$, so $1+\frac{\sin (n x)}{\sqrt{n+2}} \rightarrow 1$ uniformly on $[0,2 \pi]$ as $n \rightarrow$ ∞. Note $1+\frac{\sin (n x)}{\sqrt{n+2}}$ always lies within the compact set $\left[1-\frac{1}{\sqrt{2}}, 1+\frac{1}{\sqrt{2}}\right]$ (again since $|\sin (n x)| \leq 1$), and \ln is continuous hence uniformly continuous on compact sets. Thus by the above fact $h_{n} \rightarrow 0$ uniformly on $[0,2 \pi]$.

We conclude $\left\{h_{n}\right\}$ is equicontinuous on $[0,2 \pi]$.

Problem 2:

Claim: If $\left\{f_{n}\right\}$ is equicontinuous on $[0,1]$ then f is constant on $[0, \infty)$.
Take any $\epsilon>0$ and any $x, y \geq 0$. We will show $|f(x)-f(y)|<\epsilon$.
By equicontinuity, there exists δ such that if $a, b \in[0,1]$ and $|a-b|<\delta$, then $\left|f_{n}(a)-f_{n}(b)\right|<\epsilon$ for all n.

Choose n large enough that $\frac{x}{n} \leq 1, \frac{y}{n} \leq 1$, and $\left|\frac{x}{n}-\frac{y}{n}\right|<\delta$. Then

$$
|f(x)-f(y)|=\left|f_{n}\left(\frac{x}{n}\right)-f_{n}\left(\frac{y}{n}\right)\right|<\epsilon
$$

Since ϵ is arbitrary, we conclude $f(x)=f(y)$, and thus f is constant.
Claim: Furthermore, if f is constant on $[0, \infty)$ then $\left\{f_{n}\right\}$ is equicontinuous on $[0,1]$.

Given any $\epsilon>0$, take $\delta=\frac{1}{2}$. Then for all $x, y \in[0,1]$ with $|x-y|<\frac{1}{2}$, we have for all $n \in \mathbb{N}$ that $n x \geq 0, n y \geq 0$, and thus $f(n x)=f(n y)$. Thus $\left|f_{n}(x)-f_{n}(y)\right|=0<\epsilon$, so $\left\{f_{n}\right\}$ is equicontinuous on $[0,1]$.

Problem 3: By Arzelà-Ascoli we only need to show that $\left\{F_{n}\right\}$ is bounded and equicontinuous.

Claim: $\left\{F_{n}\right\}$ is bounded.
Because $\left\{f_{n}\right\}$ is uniformly bounded, say $\left|f_{n}(x)\right|<M$, we have

$$
\left|F_{n}(x)\right|=\left|\int_{a}^{x} f_{n}(t) d t\right| \leq \int_{a}^{x}\left|f_{n}(t)\right| d t \leq \int_{a}^{b}\left|f_{n}(t)\right| d t \leq M|a-b| .
$$

So $\left\{F_{n}\right\}$ is bounded.
Claim: $\left\{F_{n}\right\}$ is equicontinuous.
Given $\epsilon>0$ take $\delta=\frac{\epsilon}{M}$. Consider any $x>y$ with $|x-y|<\delta$. Then
$\left|F_{n}(x)-F_{n}(y)\right|=\left|\int_{a}^{x} f_{n}(t) d t-\int_{a}^{y} f_{n}(t) d t\right| \leq \int_{y}^{x}\left|f_{n}(t)\right| d t \leq M|x-y|<M \delta=\epsilon$.
Thus $\left\{F_{n}\right\}$ is equicontinuous.
Problem 4: Let $x, y \in \mathbb{R}$ with $x<y$. Split $[x, y]$ into n intervals of length $\frac{y-x}{n}$; the endpoints of these intervals are $x_{k}=x+\frac{k}{n}(y-x)$ for $k \in\{0, \cdots, n\}$. Then we have for some constant C

$$
\begin{aligned}
|f(x)-f(y)| & \leq \sum_{k=0}^{n-1}\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right| \\
& \leq C \sum_{k=0}^{n-1}\left|x_{k+1}-x_{k}\right|^{\alpha} \\
& \leq C \sum_{k=0}^{n-1}\left(\frac{y-x}{n}\right)^{\alpha} \\
& =C|y-x|^{\alpha} n^{1-\alpha} .
\end{aligned}
$$

As $n \rightarrow \infty$, we have $C|y-x|{ }^{\alpha} n^{1-\alpha} \rightarrow 0$, so $|f(x)-f(y)|=0$. Thus f is constant.

Problem 5:

First ODE:

$$
\begin{gathered}
\frac{d u}{d t}=u^{2} \\
\frac{d u}{u^{2}}=d t \\
\int \frac{d u}{u^{2}}=\int d t \\
-\frac{1}{u}=t+C \\
u=-\frac{1}{t+C} \\
u(0)=1 \Rightarrow-\frac{1}{0+C}=1 \Rightarrow-\frac{1}{C}=1 \Rightarrow C=-1 \\
u=-\left(\frac{1}{t-1}\right)=\frac{1}{1-t}
\end{gathered}
$$

Second ODE:

$$
\begin{aligned}
\frac{d u}{d t} & =\sqrt{u} \\
\frac{d u}{\sqrt{u}} & =d t \\
\int \frac{d u}{\sqrt{u}} & =\int d t \\
2 \sqrt{u} & =t+C \\
\sqrt{u} & =\frac{t+C}{2} \\
u & =\left(\frac{t+C}{2}\right)^{2}
\end{aligned}
$$

$$
\begin{gathered}
u(0)=\left(\frac{C}{2}\right)^{2}=\frac{C^{2}}{4}=0 \Rightarrow C=0 \\
u=\left(\frac{t}{2}\right)^{2}=\frac{t^{2}}{4}
\end{gathered}
$$

Problem 6:

Take $f(x)=\ln \left(e^{x}+1\right)$. Then

$$
\left|f^{\prime}(x)\right|=\left|\frac{e^{x}}{e^{x}+1}\right|<1
$$

But if f has a fixed point x then $x=\ln \left(e^{x}+1\right)$, so $e^{x}=e^{x}+1$; this is impossible, so f has no fixed point.

Problem 7:

STEP 1: Let $x_{0} \in X$ and define $x_{n}=f^{n}\left(x_{0}\right)$ (f applied n times)
Notice $d\left(x_{1}, x_{2}\right)=d\left(f\left(x_{0}\right), f\left(x_{1}\right)\right) \leq k d\left(x_{0}, x_{1}\right)$ and
$d\left(x_{2}, x_{3}\right)=d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq k d\left(x_{1}, x_{2}\right) \leq k k d\left(x_{0}, x_{1}\right)=k^{2} d\left(x_{0}, x_{1}\right)$
And more generally you can show that

$$
d\left(x_{n}, x_{n+1}\right) \leq k^{n} d\left(x_{0}, x_{1}\right)
$$

STEP 2: Claim: $\left(x_{n}\right)$ is Cauchy
Why? Let $\epsilon>0$ be given and N be TBA, then if $m, n>N$ (WLOG assume $n \geq m$), then

$$
\begin{align*}
d\left(x_{m}, x_{n}\right) & \leq d\left(x_{m}, x_{m+1}\right)+d\left(x_{m+1}, x_{m+2}\right)+\cdots+d\left(x_{n-1}, x_{n}\right) \\
& \leq k^{m} d\left(x_{0}, x_{1}\right)+k^{m+1} d\left(x_{0}, x_{1}\right)+\cdots+k^{n-1} d\left(x_{1}, x_{0}\right) \tag{BySTEP1}\\
& \leq\left(k^{m}+k^{m+1}+\cdots+k^{n-1}\right) d\left(x_{1}, x_{0}\right) \\
& =k^{m}\left(1+k+\cdots+k^{n-m-1}\right) d\left(x_{0}, x_{1}\right) \\
& \leq k^{m}\left(1+k+k^{2}+\cdots\right) d\left(x_{0}, x_{1}\right) \\
& =k^{m}\left(\frac{1}{1-k}\right) d\left(x_{0}, x_{1}\right) \\
& \leq \frac{k^{N}}{1-k} d\left(x_{0}, x_{1}\right) \quad \text { Since } m>N \text { and } k<1
\end{align*}
$$

But since $k<1$ we have $\lim _{n \rightarrow \infty} k^{n}=0$, so we can choose N large enough so that $\frac{k^{N}}{1-k} d\left(x_{0}, x_{1}\right)<\epsilon$, which in turn implies $d\left(x_{m}, x_{n}\right)<\epsilon \checkmark$

STEP 3: Since $\left(x_{n}\right)$ is Cauchy and X is complete, $\left(x_{n}\right)$ converges to some p

Claim: p is a fixed point of f.
This follows because

$$
\begin{aligned}
x_{n+1} & =f\left(x_{n}\right) \\
\lim _{n \rightarrow \infty} x_{n+1} & =\lim _{n \rightarrow \infty} f\left(x_{n}\right) \\
p & =f\left(\lim _{n \rightarrow \infty} x_{n}\right) \quad \text { (continuity) } \\
p & =f(p) \checkmark
\end{aligned}
$$

STEP 4: Uniqueness: Suppose there are two fixed points $p \neq q$, then

$$
d(p, q)=d(f(p), f(q)) \leq k d(p, q)<d(p, q) \Rightarrow \Leftarrow
$$

