ANALYSIS - HOMEWORK 4

Problem 1: Show that the sequence $\left(f_{n}\right)$ defined by

$$
f_{n}(x)=\cos (x+n)+\ln \left(1+\frac{\sin (n x)}{\sqrt{n+2}}\right)
$$

is equicontinuous on $[0,2 \pi]$
Problem 2: Suppose f is a real continuous function on \mathbb{R} and let

$$
f_{n}(x)=f(n x) \text { for } n=1,2,3, \cdots
$$

Suppose $\left\{f_{n}\right\}$ is equicontinuous on $[0,1]$. What can you say about f ?
Problem 3: Let $\left(f_{n}\right)$ be a uniformly bounded sequence of Riemann integrable functions on $[a, b]$ and put

$$
F_{n}(x)=\int_{a}^{x} f_{n}(t) d t \quad(a \leq x \leq b)
$$

Show that there is a subsequence $\left(F_{n_{k}}\right)$ which conv uniformly on $[a, b]$
Problem 4: Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is Hölder continuous with Hölder constant $\alpha>1$ then f is constant

Problem 5: Use separation of variables to find solutions to

$$
\left\{\begin{array} { r l }
{ \frac { d u } { d t } } & { = u ^ { 2 } } \\
{ u (0) } & { = 1 }
\end{array} \quad \left\{\begin{array}{rl}
\frac{d u}{d t} & =\sqrt{u} \\
u(0) & =0
\end{array}\right.\right.
$$

Definition:

f has a fixed point if $f(p)=p$ for some p
Problem 6: Find an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\left|f^{\prime}(x)\right|<1$ for all x but f has no fixed point.

Definition:

If (X, d) is a metric space, then $f: X \rightarrow X$ is a contraction if there is $k<1$ such that for all x and y we have

$$
d(f(x), f(y)) \leq k d(x, y)
$$

Problem 7: Prove the Banach Fixed Point Theorem: If (X, d) is complete and $f: X \rightarrow X$ is a contraction, then f has a unique fixed point p

Hint: Let $x_{0} \in X$ and consider $x_{n}=f^{n}\left(x_{0}\right)$ and show $\left(x_{n}\right)$ is Cauchy

